Optimal aggregate testing using Vandermonde polynomials and spectral methods

Vivian W.Y. Tam ${ }^{*, 1}$, Khoa N. Le ${ }^{1}$
Griffith School of Engineering, Gold Coast Campus, Griffith University, PMB50 Gold Coast Mail Centre, Qld 9726, Australia
Received 29 August 2006; received in revised form 31 October 2006; accepted 31 October 2006
Available online 10 November 2006

Abstract

Recycled aggregate (RA) has been used in various construction applications around the world mainly as sub-grade, roadwork and unbound materials, but not in higher-grade applications. The major barrier encountered is the variation of quality within RA, which causes lower strength, and poorer quality. This work studies the relationships among six parameters describing the characteristics of RA: (i) particle size distribution, (ii) particle density, (iii) porosity and absorption, (iv) particle shape, (v) strength and toughness, and (vi) chemical composition. Samples of RA from 10 demolition sites were obtained with service life ranging from 10 to 40 years. One additional set of samples was specifically collected from the Tuen Mun Area 38 Recycling Plant. The characteristics of these eleven sets of samples were then compared with normal aggregate samples. A Vandermonde matrix for interpolation polynomial coefficient estimation is used to give detailed mathematical relationships among pairs of samples, which can be used to work out redundant tests. Different orders of interpolation polynomials are used for comparison, hence the best-fit equations with the lowest fitting errors from different orders of polynomials can be found. Fitting error distributions are then studied by using spectral methods such as power spectra and bispectra. From that, the best equations for result estimations can be obtained. This study reveals that there is strong correlation among test parameters, and by measuring two of them: either "particle density" or "porosity and absorption" or "particle shape" or "strength and toughness", and "chemical content", it is sufficient to study RA. © 2006 Elsevier B.V. All rights reserved.

Keywords: Recycled aggregate; Concrete; Correlation; Property; Porosity; Strength; Construction

1. Introduction

Aggregate, in general, occupies about $70-80 \%$ of concrete volume and can therefore be expected to have important influence on concrete properties [1,2]. Its selection and proportioning should be given careful attention to control the quality of concrete structures. Apart from being used as an economical filler, aggregate generally gives concrete better dimensional stability and wear resistance. In choosing aggregate for a particular concrete, three general requirements should be considered: concrete economy, concrete strength, and concrete durability [2]. In addition, aggregate is more liable to deformation and less resistant than cement slurry due to their porosity [3]. As RA has higher porosity, it is more dependent on deformation and mechanically less resistant than the cement matrix coating after sufficient hardening time [3].

Rubble from demolished concrete building consists of fragments in which the aggregate is contaminated with hydrated cement paste, gypsum, and minor quantities of other substances. The size fraction that corresponds to fine aggregate mostly contains hydrated cement paste and gypsum and is unsuitable for making fresh concrete mixtures. However, the size fraction that corresponds to coarse aggregate, although coated with cement paste, has been successfully used in several laboratory and field studies [4]. A review of several studies indicated that compared with concrete containing natural aggregate, recycled aggregate concrete could have at least two thirds of the compressive strength and modulus of elasticity, hence meeting workability and durability standards [4]. A major

[^0]Table 1
Assessment of the aggregate

Parameters	Tests
Particle size distribution	Test $1: 10 \mathrm{~mm}$ size aggregate of particle size distribution Test 2: 20 mm size aggregate of particle size distribution
Particle density	Test 3: 10 mm size aggregate of particle density on an oven-dried basis (in $\mathrm{Mg} / \mathrm{m}^{3}$) Test 4: 20 mm size aggregate of particle density on an oven-dried basis (in $\mathrm{Mg} / \mathrm{m}^{3}$) Test 5: 10 mm size aggregate of particle density on a saturated and surface dried basis (in $\mathrm{Mg} / \mathrm{m}^{3}$) Test 6: 20 mm size aggregate of particle density on a saturated and surface dried basis (in $\mathrm{Mg} / \mathrm{m}^{3}$) Test 7: 10 mm size aggregate of apparent particle density (in $\mathrm{Mg} / \mathrm{m}^{3}$) Test 8: 20 mm size aggregate of apparent particle density (in $\mathrm{Mg} / \mathrm{m}^{3}$)
Porosity and absorption	Test 9: 10 mm size aggregate of water absorption (in \% of dry mass) Test 10: 10 mm size aggregate of saturated time for water absorption (in h) Test 11: 20 mm size aggregate of water absorption (in \% of dry mass) Test 12: 20 mm size aggregate of saturated time for water absorption (in h) Test 13: 10 mm size aggregate of moisture content (in \% of dry mass) Test 14: 20 mm size aggregate of moisture content (in \% of dry mass)
Particle shape	Test 15: 10 mm size aggregate of flakiness index (in \%) Test 16: 20 mm size aggregate of flakiness index (in \%) Test 17: 10 mm size aggregate of elongation index (in \%) Test 18: 20 mm size aggregate of elongation index (in \%)
Strength and toughness	Test 19: 10% fine value (in kN) Test 20: aggregate impact value (in \%)
Chemical composition	Test 21: 10 mm size aggregate of chloride content (in \%) Test 22: 20 mm size aggregate of chloride content (in \%) Test 23: sulphate content (in \%)

obstacle in using rubble as aggregate for concrete is the cost of crushing, grading, dust controlling and separation of undesirable constituents. Crushed recycled concrete or waste concrete can be an economical aggregate source which is difficult to find, and is also important when waste disposal is increasingly becoming more costly [4]. This paper aims to study properties of aggregate; and to modify aggregate testing procedures by using Vandermonde polynomial interpolation and spectral methods.

2. Aggregate assessment

Aggregate quality is generally assessed by using 23 standard tests which are categorized into 6 parameters in this paper (Table 1): (i) particle size distribution; (ii) particle density; (iii) porosity and absorption; (iv) particle shape; (v) strength and toughness; and (vi) chemical composition.

The standard methods used for testing these aggregate properties are summarized in Table 2.

3. An interpolation process using Vandermonde matrix

Interpolation using polynomial fitting is a technique which uses polynomials of order up to 20 to fit a given set of data. This technique is well known because it is much better than the linear regression method of simply assigning the "line of best fit" to the data. Given a set of data in the form of $x(1), x(2), \ldots, x(N)$, with values of $y(1), y(2), \ldots, y(N)$, where N is the data length. The coefficients $c_{1}, c_{2}, \ldots, c_{N}$ of the interpolating polynomial which can be used to "best fit" the data relate the input x to the output y via the Vandermonde matrix of the form [5]:

$$
\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{N-1} \tag{1}\\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{N-1} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
1 & x_{N} & x_{N}^{2} & \ldots & x_{N}^{N-1}
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\ldots \\
c_{N}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\ldots \\
y_{N}
\end{array}\right],
$$

where the c matrix consists of coefficients of the polynomial. It should be stressed that the c matrix does not always exist; prompting that extra care must be taken when using the technique to interpolate different data sets.

Having obtained the c matrix, the interpolating polynomial is thus given by:

$$
\begin{equation*}
y_{\text {interpolate }}=c_{N} x^{N}+c^{N-1} x^{N-1}+\cdots+c_{1} x+c_{0} \tag{2}
\end{equation*}
$$

Table 2
Standard used for aggregate

Properties of aggregate	Standard
Particle size distribution	$[11]$
Sieve analysis	
Particle density	$[12]$
Particle density on oven-dried basis	$[12]$
Particle density on saturated and surface-dried basis	
Apparent particle density	$[12]$
Porosity and absorption	$[25]$
Water absorption	$[15]$
Moisture content	$[16]$
Particle shape	$[17]$
Flakiness index	$[18]$
Elongation index	
Strength and toughness	$[26]$
Ten percent fine value (TFV)	Manual of Alltech Ion Chromatography
Aggregate impact value (AIV)	System ICM-300
Chemical composition	
Chloride content	
Sulphate content	

which can be used to mathematically model the given data. It should also be noted that $y_{\text {interpolate }}$ generally resembles the shape of the fitted data. However, sometimes, it is difficult to find all coefficients for a particular data set. Thus, if the method is applicable to a set of data, then the process of studying and simulating the data becomes much easier and less time consuming as $y_{\text {interpolate }}$ can now be validly used. However, no numerical methods can completely simulate a given set of data, thus, there exists some marginal errors in curve fitting which generally do not significantly alter the results obtained by analysing $y_{\text {interpolate }}$. Even though interpolation and spectral techniques have been widely used in the field of signal and image processing [5], they have not been widely used in the field of construction material and management to process data and to study their correlation.

Out of the 23 tests, the first two tests do not have numerical results, leaving tests $3-23$ applicable for interpolation. Every test from 3 to 23 is then used as an input with the other tests as outputs to obtain their mathematical relationships with the input test. For example, the first patch of interpolation uses test 3 as the input, thus tests $4-23$ are used as the outputs. As a result, the relationships between test pairs 4 and 3,5 and 3,6 and 3 and so on until the last test pairs of 23 and 3 are obtained. In the second patch of interpolation, test 4 is used as the input and tests $5,6,7$ until 23 as the outputs. The interpolation process continues until test 22 is taken as the input and test 23 as the output, in this case, there is only one pair of input and output in the interpolation patch. At the end of the whole interpolation process, by using one order, there are 210 equations describing the mathematical relationships among all the tests, i.e. every test is interpolated with every other test, and therefore it is not difficult to estimate the results of a particular test using one of the many equations obtained from the interpolation process. Ten different order polynomials are used to interpolate the data, yielding 2100 equations relating the results of all tests. The challenge is to choose the best polynomials with the lowest fitting errors. Fitting errors are estimated by taking the difference of the interpolation polynomial and the real data. Because there are 10 different polynomial orders, there exist 10 different mathematical equations which can be used to estimate results of a particular test 4 . The same process is carried out for all tests and in all orders. It is clear that the more polynomials the interpolation process uses, the easier it is to simplify aggregate testing procedures as there is more than one equation relating results of a particular input to a particular output available for selection. The main difference of this paper and other papers is to use spectral methods such as power spectra and bispectrum to study the fitting errors instead of estimating the error's mean, thus revealing error uniformness and distribution. To choose satisfactory polynomials, the error upper limit is chosen to be 15% in this paper. It should be noted that interpolation equations possessing errors larger than the upper limit are considered to be invalid and hence cannot be used to estimate the results of the other tests.

The interpolating polynomials are generated by using the MATLAB package via the command polyfit. The order of the polynomials is considered to be an important parameter. For this particular set of data, polynomial orders of $1-10$ are used to thoroughly study the effectiveness of the method. It should also be noted that the higher the order of the polynomial, the better the fit to the data. However, for data consisting of many abrupt changes, high-order polynomials cannot satisfactorily interpolate the data as will be shown later.

4. Spectral methods

4.1. The Fourier transform

The Fourier transform is a useful and powerful tool employed to study "frequency" components of signals and discrete data which are usually recorded in the time domain. After transforming the data into the frequency domain using the Fourier transform, the signal energy distribution at different frequencies is revealed. Effectively, the Fourier transform can be considered as a prism where white light can be split into its individual spectra. For the case of the Fourier transform, the signal energy is split over the signal's spectrum which consists of a number of frequencies at which harmonics and sub-harmonies are displayed. Mathematically, the Fourier transform $X(f)$ as a function of the frequency f is given as [6]:

$$
\begin{equation*}
X(f)=\int_{-\infty}^{+\infty} x(t) \mathrm{e}^{-j 2 \pi f t} \mathrm{~d} t \tag{3}
\end{equation*}
$$

where $j^{2}=-1$ is a complex constant, $\pi \approx 3.1415$ and $x(t)$ is the input signal or data. The input data or signal is usually a 1D array or 2D matrix.

To recover a time signal from its Fourier transform, the inverse Fourier transform is employed, which is mathematically given as:

$$
\begin{equation*}
x(t)=\int_{-\infty}^{+\infty} X(f) \mathrm{e}^{+j 2 \pi f t} \mathrm{~d} f \tag{4}
\end{equation*}
$$

It should be noted that the Fourier transform is a complex number which is uniquely described by its magnitude and phase. Thus, it is clear that there are two ways of representing data: in the time domain and in the frequency domain using the Fourier transform. The transformation from time domain to frequency domain is achieved by using the operator $\mathrm{e}^{j \omega t}$, which can be given in the following equation as:

$$
\begin{equation*}
\mathrm{e}^{j \omega t}=\cos (\omega t)+j \sin (\omega t) \tag{5}
\end{equation*}
$$

Frequency is normally defined as the number of repetitions over time and the concept of "frequency domain" is believed to be new in the field of construction material and management. Frequency is inversely proportional to time, which means the larger the time, the smaller the frequency and vice versa. Using the concept of frequency and time it can be said that data which have a long time span have densely concentrated spectra over a short frequency range and vice versa. The magnitude of the frequency components which are displayed over a frequency range or spectrum is defined as proportional to the signal energy. Signals which are continuous and periodic in time have densely concentrated energy spectra. For ease of understanding, the Fourier transform can be viewed as mapping of the energy distribution in the signal in the frequency domain at which harmonic peaks or dominant peaks represent the peak energy concentration in the waveform. For example, the Fourier transform of a constant signal which is continuous from $-\infty$ to $+\infty$ is an impulse whose energy concentration is theoretically perfect. A common and popular sinusoidal signal of frequency $f_{0}=1 \mathrm{~Hz}$ has two impulses located at $\pm 1 \mathrm{~Hz}$ in its spectrum as shown in Fig. 1.

Fig. 1. The Fourier transforms of a constant straight line signal and a sinusoid $y(t)=\sin (t)$ using Eq. (1).

4.2. The power spectrum

The interpolation method is used to estimate the results of output tests from input tests. From that, it is possible to determine redundancy among the tests, in turn, significantly lowers the number of tests. To further study the correlation among the tests, spectral methods using the power spectrum and bispectrum are employed. The power spectrum $P(f)$ of a data set $x(t)$ is given in the following equation as:

$$
\begin{equation*}
P(f)=|X(f)|^{2} \tag{6}
\end{equation*}
$$

where $X(f)$ is the Fourier transform of the data or input signal. It is evident that the power spectrum is proportional to the square magnitude of the input signal's Fourier transform because the signal energy is directly related to its squared magnitude. It is important to stress that energy plays an important role in determining data characteristics, i.e. periodic, aperiodic or chaotic, detecting transitions from one state to another, i.e. from periodicity to chaos or periodicity to transient, and working out the energy weighting at different frequencies [6] which can be achieved by estimating the power spectrum of the input data. In the case of studying sample results of tests in construction material and management, the power spectrum is particularly useful as it can reveal the energy distribution of samples in each test. From that, the significance of each test can be assessed. In addition, the power spectrum can be used to classify different types of data including periodic, chaotic, transient and noise by interpreting its shapes and frequency range [7]. Recently, the power spectral method has been successfully used to identify dominant criteria [8] in environmental surveys by studying their energy distribution. Moreover, as data processing and analyses are increasingly important, this further strengthens the idea of using spectral methods in the field of construction material and management. The only drawback of the power spectrum is that its phase information is suppressed which means that two different data sets could have identical power spectra. To overcome this problem and to further study the correlation among the tests and samples, the bispectral method is employed.

4.3. The bispectrum

To further study the data, a bispectral method is introduced which shows the correlation among the tests at various "frequencies". The bispectrum $B\left(f_{1}, f_{2}\right)$ has been widely employed in the field of high-order statistics to study data correlation in 3D and is given by [9]:

$$
\begin{equation*}
B\left(f_{1}, f_{2}\right)=X\left(f_{1}\right) X\left(f_{2}\right) X^{*}\left(f_{1}+f_{2}\right) \tag{7}
\end{equation*}
$$

where the symbol "*" means complex conjugate.
It is clear that the bispectrum is strongly dependent on the Fourier transform of the input signal. From Eq. (7), the term $X^{*}\left(f_{1}+f_{2}\right)$ represents the correlation among various frequency terms in the $\left(f_{1}+f_{2}\right)$ plane. To estimate the bispectrum, the mean value of the data is removed to eliminate sudden spikes and pulses which could lead to misleading interpretation. In MATLAB, this can be done by using a detrend (\cdot) function. After that, the data are windowed using a Hanning window via the command hanning (\cdot) provided in MATLAB. In addition, the data are also normalised by dividing each column by its largest item so that abrupt changes are nullified. The Fourier transforms of the detrended data are then calculated, in this case, there are 21 out of 23 tests having numerical results, yielding 21 Fourier transforms. In this paper, the bispectrum of an error matrix of 210×10 is calculated to show correlation among the fitting errors and also error uniformness.

Unlike the power spectrum which suppresses the phase information in the data, the bispectrum uniquely gives the phase information, i.e. the correlation among a number of frequencies, which enable detailed studied on correlation among the tests. However, because the phase information is usually difficult to interpret, the magnitude bispectrum is usually employed as the main tool for data analyses.

5. The study

Ten series of RA samples (samples 1-10) were obtained from 10 demolition sites with service life ranging from 10 to 40 years. Sample 11 was specifically collected from the Tuen Mun Area 38 Recycling Plant. Samples one to eleven are then compared with normal aggregate which is sample 12. The results of 23 tests for samples $1-12$ are summarized in Table 3.

5.1. Particle size distribution

Since the strength of fully compacted concrete with a given water/cement ratio is independent of the particle size distribution (sieve analysis of the aggregate), sieve analysis is important only if it affects fresh concrete workability [10]. Samples 1-12 have met the particle size distribution criterion of being 10 and 12 mm single-size aggregate as stated in BS 882 [11] (see Table 3).

Table 3
Summary of results from samples 1-12

[^1]
5.2. Particle density

The particle density of aggregate is the ratio of the mass of a given volume of material to the mass of the same volume of water [12]. Aggregate particle density usually is an essential property for concrete mix design and also for calculating the volume of concrete produced from a certain mass of materials [13]. As the density of cement mortar (around $1.0-1.6 \mathrm{Mg} / \mathrm{m}^{3}$) is less than that of stone particles of about $2.60 \mathrm{Mg} / \mathrm{m}^{3}$ [14], the smaller the particle density, the higher the cement mortar content adhering to the RA. The average results of the three different tests based on oven-dried basis, saturated and surface-dried basis, and apparent particle density, were measured and are presented in Table 3.

From Table 3, samples seven and eight have the lowest values of particle density, inferring the highest amount of cement mortar adhering to RA, while sample 12 (normal aggregate) has the highest particle density. Furthermore, particle densities of 20 mm aggregate are larger than those of 10 mm aggregate, inferring a higher amount of cement mortar attached to the 10 mm aggregate. This also implies that the larger the aggregate size, the smaller the amount of cement mortar attached to its surface, yielding better aggregate quality.

Polynomial fitting of tests (outputs) based on the results of a particular test (input) can be achieved by using an appropriate polynomial order. Generally, the higher the polynomial order, the better the fitting. However, it is not always the case if there are abrupt changes in the outputs because a very high-order polynomial is required, which is not practical if the order is larger than the upper limit of 20 given in MATLAB. Thus, care must be taken to choose the appropriate order for the interpolation polynomial, otherwise large errors can be generated. The fitting errors of all orders are given to assess the effectiveness and validity of each order (see Appendix B).

Eqs. (8)-(217) mathematically describe the relationship among the tests and are given in Appendix A. Eqs. (8)-(112) give the relationships of tests $4-23$ which are considered as the outputs using the best-fit polynomials. Simulation results show that the errors for tests 3-20 are mostly acceptable with the maximum errors lower than the chosen error limit of 15%.

5.3. Porosity and absorption

The overall porosity or absorption of aggregate either depends on a consistent degree of particle porosity or represents an average value for a mixture of variously high and low absorption materials [13]. In this study, both the rate of water absorption and moisture content are used to assess the level of porosity and absorption of the samples.

The water absorption and moisture content of recycled aggregate (samples 1-12) are generally higher than that of normal aggregate (sample 12) (see Table 3). Ten millimetre size aggregate of sample 7 exhibits the highest water absorption rate and moisture content of about 9.06 and 1.70 , respectively, and 20 mm aggregate from sample 12 has the lowest water absorption rate and moisture content of about 0.53 and 0.15 , respectively. One of the most obvious attributes between RA and normal aggregate is the higher water absorption rate and moisture content, which are affected by the amount of cement paste sticking on the aggregate surface. Cement mortar describes the soundness of aggregate since its porosity is higher than that of aggregate, i.e. RA with a higher absorption rate tends to be worsened in strength and resistance under freezing and thawing conditions [18-20] than aggregate with a lower absorption rate. In most samples, the water absorption rate of 20 mm aggregate is less than that of 10 mm aggregate, inferring that larger size aggregate may have less cement mortar adhered to its surface, leading to a lower water absorption rate as explained in the last section.

Using a standard testing method [12] of waiting for 24 h before measuring water absorption is not appropriate for recycled aggregate due to the high amount of loosely bonded cement paste on particles resulted from the crushing process. Experiments showed that the required time to fully saturate RA depends on its quality which can be determined by the amount of cement paste adhering on its surface. In most cases, the required time is more than 24 h . From experiment, it is believed that full saturation can take up to 48 h ; some may take 72 h or even 120 h . Thus, a fixed duration of 24 h set by BS 812 : Part 2 [12] may not be sufficient for RA. Relationships of tests 10-23 as the outputs based on tests $9-14$ as the inputs are described by Eqs. (113)-(181) using the best-fit polynomials.

5.4. Particle shape

The characteristics and variations of the shape of aggregate particles can affect concrete strength and workability [13]. The shape of aggregate particles is best described by using two principal parameters: 'sphericity' and 'roundness'. Aggregate particles are classified as flaky when they have a thickness (smaller dimension) of less than 0.6 of their mean sieve size. For example, a mean sieve size of 7.5 mm is the mean of two successive sieves at 5 and 10 mm [15]. Aggregate particles are classified as elongated when they have a length (greatest dimension) of more than 1.8 of their mean sieve size [16].

BS 882 [11] now provides limits for flakiness (particle thickness relative to other dimensions). Such aggregate particles could lead to either water gain under the aggregate, causing planes of weakness, or higher water demand and lower strength in concrete. BS 882 [11] limits the flakiness index determined in accordance with BS 812: Part 105:1 [15] to about 50% for uncrushed gravel and 40% for crushed rock or crushed gravel, with a warning that lower values may have to be specified for special circumstances such
as pavement wearing surfaces. All the 12 samples in this study have a flakiness index lower than 40%. Mathematical relationships of tests $17-23$ as the outputs based on tests $15-18$ as the inputs are given in Eqs. (182)-(207) by using the best-fit polynomials.

5.5. Strength and toughness

It is important that aggregate used for concrete be 'strong' in a general sense [14]. In most cases, inherent aggregate strength is dependent upon aggregate 'toughness', a property broadly analogous to 'impact strength'. In this study, 10% fine values (TFV) and aggregate impact values (AIV) are used to determine the strength and toughness of the 12 samples.

The TFV measures the resistance of aggregate to crushing which is applicable to both weak and strong aggregates [17], the larger the TFV value, the more resistant the aggregate to crushing [13]. The AIV relatively measures the resistance of aggregate to sudden shock or impact, which in some aggregate is different from its resistance to a slowly applied compressive load [18]. The smaller the AIV value, the tougher the aggregate or more impact resistant than higher strength concrete aggregate [13]. Out of the 12 samples, sample 12 (ordinary aggregate) has the highest value of TFV and the lowest value of AIV at 189 kN and 21%, respectively; while sample 2 achieves the lowest value of TFV and the highest value of AIV at 61 kN and 36%, respectively (see Table 3). The obvious reason is that the cement paste attached to the RA directly affects its strength.

BS 882 [11] provides limits for TFV and AIV, minimum of 150 kN and 45%, respectively, according to the type of concrete in which the aggregate is used. According to the British Standard, samples 6 and 12 can be used for structural elements, samples 4 and 7 for pavement work and other samples confined to non-structural elements. The mathematical relationships of tests 20-23 as the outputs based on tests 19 and 20 as the inputs are given in Eqs. (208)-(214) by using the best-fit polynomials.

5.6. Chemical composition

Chloride and sulphate contents of RA are critical. Chloride contamination of recycled aggregate mainly derived from marine structures or similarly exposed structural elements is of concern which can lead to corrosion of steel reinforcement. However, for most RA (samples 1-6 and 8-12), the chloride ion contents are low and within the limit of standards (under 0.05%). Nevertheless, sample 7 falls beyond the limit with chloride contents of about 0.0976% and 0.0902% for 10 and 20 mm aggregates, respectively (see Table 3). From further investigation of the RA of sample 7, some shell (from fine marine aggregate) contents were found. The major reason may be the use of marine water or stream water for concrete mixing during periods of shortage of fresh water supply in the 1960s, which has been banned since 1970s. This could have increased the chloride composition in the sample.

In general, RA has a higher sulphate content than natural aggregate. The occurrence of sulphate-based products such as plaster as contaminants in demolition waste is common. Consideration must be given to the use of sulphate resisting cement in situations where plaster contamination is suspected [19]. However, gypsum plaster is rarely used in Hong Kong where lime plaster is more common. In fact, the highest recorded sulphate content is about 0.0308% for sample 1 , which is still within the standard of 1% (see Table 3). Therefore, contamination of sulphate content is not a major problem for RA in Hong Kong. The mathematical relationships of tests 22 and 23 as the outputs with tests 21 and 22 as the inputs are given in Eqs. (215)-(217) by using the best-fit polynomials.

Using the results obtained in Sections 5.1-5.6, the best-fit polynomials are shown in Eqs. (8)-(217). From the results obtained in this paper, the tests can be divided into two major groups: group one consists of tests $3-20$, and group two consists of tests $21-23$. It is clear that the tests in group one are strongly correlated which as seen in Eqs. (8)-(214). This means that the results of any test in this group can be successfully estimated by using the results of another test from the same group. The error percentage of the first test group is satisfactory. However, there are a small number of tests possessing errors of more than 15%, which do not affect the findings in this paper since there is more than one mathematical expression describing them.

It should also be noted that there are some satisfactory relationships among the three tests in the second test group (tests 21-23). However, most equations in this group possess high error percentage which suggests that they are poorly correlated. It can be suggested not to use Eqs. (215)-(217) to predict the results of tests in the first test group to estimate the results of the second test group. As a result, only two dominant tests out of tests 3-23 are required instead of 21 tests being routinely conducted in total in the industry. In addition to tests 1 and 2, there are four tests which are required to be conducted in total. It should also be noted that out of tests $3-20$, the results of only one of these tests is required which provides flexibility in conducting the tests depending on the conditions and equipment availability. As construction sites in Hong Kong are limited in size, eliminating redundant tests significantly lowers cost and shortens aggregate testing time, yielding more efficient space usage on site and many other benefits for the construction industry. Table 4 summarises the findings of the paper.

To assess the effectiveness of the interpolation process using different orders, fitting errors of interpolation polynomials of orders $1-10$ are estimated and given in Fig. 2. Fitting errors are the difference between the real data and values of the corresponding polynomials. It is clear that the smaller the fitting error, the better the polynomial fitting. The maximum allowable fitting error is chosen to be 15% in this paper. In addition, by using spectral methods, it is possible to study fitting error distribution and uniformness, which can be used to study error behaviour, i.e. predict error magnitude for different tests.

Figs. 3 and 4 plot the normalised and absolute errors of all orders, respectively. It should be noted that the normalised errors of all orders are plotted for comparison purposes only. The absolute errors plotted in Fig. 4 give more insight to the effectiveness of

Table 4
Comparison of the normal testing method and the new testing method using the Vandermonde interpolation technique

Test number	Normal method	Vandermonde interpolation technique
Tests 1 and 2	Conducted both. Not applicable to the interpolation process since these tests do not have numerical results	
Tests 3-20	Conducted all	Conducted 1 out of 18 tests
Tests 21-23	Conducted all	Conducted 1 out of 3 tests
Total number of required tests	21	2

orders one to eight. Orders 9 and 10 are not included in Fig. 4 because their absolute fitting errors are much larger than those of the lower orders, making it impossible to plot them on the same scale. To further study the fitting errors, the bispectrum of the error matrix of all orders is computed and plotted in Fig. 6. The power spectra of the fitting errors of each order are also plotted in Fig. 7.

From Figs. 3 and 4, it is clear that the fitting errors of all orders vary uniformly among the tests. It should also be clear that for orders one to seven, the errors are more uniformly distributed than those of orders $8-10$, suggesting that high-order polynomials are not suitable for modeling the data in this case. This is evidently reflected by having large "harmonic" spikes as shown in Fig. 3. Fig. 5 gives a useful plot of average fitting errors using all polynomial orders in which it is clear that orders seven and eight yield

Fig. 2. Mesh plots of the error matricies of the (a) 1st-order polynomials; (b) 2nd-order polynomials; (c) 3rd-order polynomials; (d) 4th-order polynomials; (e) 5th-order polynomials; (f) 6th-order polynomials; (g) 7th-order polynomials; (h) 8th-order polynomials; (i) 9th-order polynomials; (j) 10th-order polynomials.

Fig. 2. (Continued).

Fig. 3. Mesh plot of the normalised average error matrix of all test inputs using orders $1-10$. This graph is given for comparison purposes only as the 10th-order polynomials possess larger errors compared with the other polynomials.

Fig. 4. Mesh plot of the absolute average error matrix of all test inputs with orders one to eight.

Fig. 5. Absolute average errors of all test inputs with orders one to eight.
the smallest errors. In addition, it is also clear that the eighth-order polynomial possesses smaller fitting errors than those of the seventh-order, suggesting that the former can be a better choice to model the data. However, one major advantage of the seventh-order polynomial over the eighth-order polynomial is that the errors of the former are more uniformly distributed. Thus, by using the seventh-order polynomial for the interpolation process, it is possible to predict the fitting errors of different test inputs. Compared with the seventh-order, the eighth-order polynomial possesses smaller fitting errors at test inputs $3,4,6,14,15,17,21$ and 22 , and larger errors at test inputs 7,8 (apparent particle density), 10 (time period of water absorption), 13 (moisture contents of 10 mm aggregate) and $19(10 \%$ fine value) in which for test input 7 , there is a sudden jump in its fitting error which suggests that the eighth-order is more unstable and unpredictable. Further, it gives higher fitting errors for test input 19 which is an important test which should be accurately modeled. However, it should not be forgotten that the eighth-order polynomial does give smaller fitting errors at some other test inputs suggesting that it is also a useful polynomial for the interpolation process. Thus, there exists a trade-off between unpredictability and error magnitude at some particular important tests. By considering all aspects of the seventh- and eighth-order polynomials, it can be suggested that the seventh-order is more suitable for the interpolation process for this data set. Apart from the seventh- and eighth-order polynomials, other smaller orders give fine results but with larger average errors. The 9th- and 10th-order polynomials possess larger fitting errors and thus they should not be employed for the interpolation process in this case. At this point, the answer to the question raised in Section 3 is due to the large fitting error generated by orders 9 and 10 . It is clear that the larger the order, the larger the error because large-order polynomials possess sharp edges and spikes which are not present in the data, causing large fitting errors. Thus, orders seven or below should be used for the interpolation process to study the data.

From Fig. 6, it is clear that the fitting errors of polynomials of orders less than five are strongly correlated among all equations. Further, it is clear that these fitting errors are not uniformly distributed. In addition, because the bispectrum's magnitude is non-zero, it is clear that these orders possess larger errors than those of orders 5-10. It should be noted that the number of equations displayed in Fig. 6 is only 105 as the other half of the bispectrum is identical. For polynomials of orders 5-10, there is much less correlation in the fitting errors for these polynomials suggesting that better estimation results can be obtained compared to those using the first

Fig. 6. Mesh plot of bispectrum of the error matrix of all orders.
five orders. The bispectral magnitude corresponding to these orders is also much smaller than that of the first five orders suggesting that their fitting errors are much smaller. One major drawback of the higher-order polynomials is that the very first few equations do not possess low fitting errors.

It is clear that the bispectrum is a useful tool to assess the error distribution and correlation, however, to assess error uniformness, the power spectrum should also be used. Fig. 7 shows the power spectra of fitting errors of orders $1-10$ in which distinctive spikes are clearly displayed suggesting periodic characteristics in the fitting errors of most orders. This feature is also strongly revealed by examining the bispectrum given in Fig. 6 for the first five orders. Out of the last five orders, orders 9 and 10 possess smooth power spectra as can be seen in Fig. 7(i) and (j). It should be noted that the spikes represent "dominant harmonics" in the errors, which means they are periodic as can be shown in Fig. 1 for the power spectrum of a sinusoid consisting of two distinctive harmonic spikes. By having smooth power spectra, it can be suggested that the errors of orders 9 and 10 are not periodic, but tend to be random or chaotic or in a transition to chaotic [20-24]. It is also clear that even though these orders yield small fitting errors, usually, they are unpredictably large which explains their chaotic and random nature. For orders five to eight, it is clear that their fitting errors are more periodic and more predictable. The error uniformness is determined by the number of distinctive spikes in the power spectrum,

Fig. 7. The power spectra of the (a) 1st-order polynomials; (b) 2nd-order polynomials; (c) 3rd-order polynomials; (d) 4th-order polynomials; (e) 5th-order polynomials; (f) 6th-order polynomials; (g) 7th-order polynomials; (h) 8th-order polynomials; (i) 9th-order polynomials; (j) 10th-order polynomials.

Fig. 7. (Continued).
i.e. the more spikes, the more uniform the error. In this case, orders seven and eight possess the most uniform errors even though their error magnitude may not be smallest. This provides predictability and uniformness in the errors which are desirable features in aggregate testing, because the easier to predict the error, the better the approximation method. It is also clear that the findings obtained by using the spectral methods are consistent with the findings obtained by using the normal average error calculations as shown in Figs. 2-5. It should be stressed that the spectral methods are the only methods which can show error correlation and uniformness. Thus, they are considered to be effective and powerful tools for data analysis in the field of construction material and management, especially for optimal aggregate testing.

As has been shown in this paper, polynomial interpolation and spectral methods are useful tools which can find a wide range of applications in the construction industry. Possible further applications using Vandermonde polynomial interpolation and spectral methods include identifying dominant criteria in affecting the environmental performance; correlating quality prevention and failure factors in construction industry; predicting the behaviour of unknown data to see when and where the transition from periodicity to chaos is in construction management and material engineering; and studying the relationship between concrete bahviour and its characteristics.

6. Conclusions

To have wide adoption of RA, it is essential to carefully assess its properties including particle density, porosity and absorption, particle shape, strength and toughness, and chemical composition. Sieve analysis should also be done to make good concrete proportioning. It has been found that all six parameters have direct relationship with the cement mortar adhering on the surface of aggregate leading to lower particle density, higher water absorption and lower 10% fine value. The RA from sample 7 exhibits the lowest quality because marine or stream water has been used in concrete mixing, which, however, is still adoptable for non-structural construction applications. Further, it has been found that there is strong correlation among some of the parameters which can be used to simplify aggregate testing processes. For example, by measuring one of "particle density", "porosity and absorption", "particle shape" and "strength and toughness" and "chemical content", it is sufficient to assess the characteristic and properties of RA. A new technique of using interpolation polynomials of orders $1-10$ has been employed in this paper. New spectral methods using the power spectrum and bispectrum have been introduced in this paper to study error correlation and uniformness. Fitting errors of interpolation
polynomials have been estimated in which it was shown that polynomials of orders one to eight yield satisfactory results by providing periodic and predictable fitting errors of small magnitude. Orders 9 and 10 have been shown to possess random or chaotic fitting errors suggesting that they are not suitable for modeling the collected data presented in this paper. Out of the 10 orders, order 7 is the optimum order for use with the interpolation technique to process the data. This paper has shown that interpolation techniques can be successfully used to process data in the field of construction material and management.

Appendix A. Best-fit polynomials for assessing aggregate characteristics

$$
\begin{align*}
y_{4}= & 10^{15}\left(0.0040 x_{3}^{9}-0.0308 x_{3}^{8}+0.1062 x_{3}^{7}-0.2132 x_{3}^{6}+0.2750 x_{3}^{5}-0.2363 x_{3}^{4}+0.1353 x_{3}^{3}-0.0498 x_{3}^{2}\right. \tag{8}\\
& \left.+0.0107 x_{3}-0.0010 \quad \text { (with error of } 0.88 \%\right) \\
y_{5}= & 10^{13}\left(-0.0003 x_{3}^{8}+0.0023 x_{3}^{7}-0.0069 x_{3}^{6}+0.0120 x_{3}^{5}-0.0131 x_{3}^{4}+0.0091 x_{3}^{3}-0.0040 x_{3}^{2}+0.0010 x_{3}-0.0001\right. \\
& (\text { with error of } 0.12 \%) \tag{9}
\end{align*}
$$

$$
\begin{aligned}
y_{6}= & 10^{13}\left(0.0014 x_{3}^{8}-0.0096 x_{3}^{7}+0.0292 x_{3}^{6}-0.0508 x_{3}^{5}+0.0552 x_{3}^{4}-0.0383 x_{3}^{3}+0.0166 x_{3}^{2}-0.0041 x_{3}\right. \\
& +0.0004 \text { (with error of } 0.60 \%)
\end{aligned}
$$

$$
\begin{aligned}
y_{7}= & 10^{15}\left(0.0006 x_{3}^{9}-0.0045 x_{3}^{8}+0.0156 x_{3}^{7}-0.0315 x_{3}^{6}+0.0407 x_{3}^{5}-0.0350 x_{3}^{4}-0.0201 x_{3}^{3}-0.0074 x_{3}^{2}\right. \\
& +0 \text { 0016 }
\end{aligned}
$$

$$
\left.+0.0016 x_{3}-0.0002 \quad \text { (with error of } 0.42 \%\right)
$$

$$
y_{8}=10^{15}\left(0.0050 x_{3}^{10}-0.0361 x_{3}^{9}+0.1113 x_{3}^{8}-0.1887 x_{3}^{7}+0.1821 x_{3}^{6}-0.0813 x_{3}^{5}-0.0192 x_{3}^{4}+0.0479 x_{3}^{3}\right.
$$

$$
\left.-0.0280 x_{3}^{2}+0.0078 x_{3}-0.0009\right) \quad(\text { with error of } 2.18 \%)
$$

$$
y_{9}=10^{15}\left(0.0069 x_{3}^{10}-0.0362 x_{3}^{9}+0.0489 x_{3}^{8}+0.1012 x_{3}^{7}-0.4791 x_{3}^{6}+0.8371 x_{3}^{5}-0.8491 x_{3}^{4}+0.5413 x_{3}^{3}\right.
$$

$$
\left.-0.2150 x_{3}^{2}+0.0489 x_{3}-0.0049\right) \quad(\text { with error of } 2.13 \%)
$$

$$
\begin{aligned}
y_{10}= & 10^{15}\left(0.0254 x_{3}^{9}-0.1964 x_{3}^{8}+0.6746 x_{3}^{7}-1.3509 x_{3}^{6}+1.7377 x_{3}^{5}-1.4890 x_{3}^{4}+0.8499 x_{3}^{3}-0.3116 x_{3}^{2}\right. \\
& +0.0666 x_{3}-0.0063 \quad(\text { with error of } 5.22 \%)
\end{aligned}
$$

$$
\begin{equation*}
y_{11}=10^{11}\left(0.0327 x_{3}^{4}-0.1157 x_{3}^{3}+0.1534 x_{3}^{2}-0.0902 x_{3}+0.0199\right) \quad(\text { with error of } 7.77 \%) \tag{15}
\end{equation*}
$$

$y_{12}=-4.4200 x_{3}+4.5739 \quad$ (with error of $\left.18.83 \%\right)$

$$
\begin{aligned}
y_{13}= & 10^{13}\left(0.0518 x_{3}^{8}-0.3616 x_{3}^{7}+1.1038 x_{3}^{6}-1.9237 x_{3}^{5}+2.0940 x_{3}^{4}-1.4578 x_{3}^{3}+0.6339 x_{3}^{2}-0.1574 x_{3}\right. \\
& +0.0171 \quad \text { (with error of } 2.40 \%)
\end{aligned}
$$

$$
\begin{aligned}
y_{14}= & -16.4255 x_{3}^{2} \\
& +25.1580 x_{3}-8.7004 \quad \text { (with error of } 22.46 \% \text {) }
\end{aligned}
$$

$$
y_{15}=10^{13}\left(0.0630 x_{3}^{8}-0.4399 x_{3}^{7}+1.3420 x_{3}^{6}-2.3378 x_{3}^{5}+2.5435 x_{3}^{4}-1.7699 x_{3}^{3}+0.7692 x_{3}^{2}-0.1909 x_{3}\right.
$$

$$
+0.0207 \quad \text { (with error of } 3.93 \% \text {) }
$$

$$
\begin{aligned}
y_{16}= & 10^{13}\left(0.0292 x_{3}^{8}-0.2041 x_{3}^{7}+0.6238 x_{3}^{6}-1.0886 x_{3}^{5}+1.1866 x_{3}^{4}-0.8272 x_{3}^{3}+0.3602 x_{3}^{2}-0.0896 x_{3}\right. \\
& +0.0097 \text { (with error of } 4.39 \%)
\end{aligned}
$$

$$
\begin{align*}
& y_{17}= 10^{11}\left(-0.0209 x_{3}^{7}+0.1286 x_{3}^{6}-0.3396 x_{3}^{5}+0.4978 x_{3}^{4}-0.4373 x_{3}^{3}+0.2304 x_{3}^{2}-0.0674 x_{3}+\right. \tag{21}\\
&0.0084) \quad \text { (with error of } 11.74 \%)
\end{align*}
$$

$$
y_{18}=10^{15}\left(-0.0047 x_{3}^{10}+0.0372 x_{3}^{9}-0.1327 x_{3}^{8}+0.2782 x_{3}^{7}-0.3783 x_{3}^{6}+0.3480 x_{3}^{5}-0.2185 x_{3}^{4}+0.0920 x_{3}^{3}-\right.
$$

$$
\begin{equation*}
\left.0.0246 x_{3}^{2}+0.0037 x_{3}-0.0002\right) \quad(\text { with error of } 3.80 \%) \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
y_{19}=10^{15}\left(0.0073 x_{3}^{9}-0.0564 x_{3}^{8}+0.1941 x_{3}^{7}-0.3890 x_{3}^{6}+0.5008 x_{3}^{5}-0.4296 x_{3}^{4}+0.2455 x_{3}^{3}-0.0901 x_{3}^{2}\right. \tag{23}
\end{equation*}
$$

$$
\left.+0.0193 x_{3}-0.0018 \quad \text { (with error of } 4.28 \%\right)
$$

$$
\begin{aligned}
y_{20}= & 10^{15}\left(0.0274 x_{3}^{9}-0.2126 x_{3}^{8}+0.7339 x_{3}^{7}-1.4764 x_{3}^{6}+1.9082 x_{3}^{5}-1.6431 x_{3}^{4}+0.9425 x_{3}^{3}-0.3474 x_{3}^{2}\right. \\
& \left.+0.0746 x_{3}-0.0071 \quad \text { (with error of } 2.92 \%\right) \\
y_{21}= & -10^{13}\left(0.0127 x_{3}^{8}-0.0896 x_{3}^{7}+0.2759 x_{3}^{6}-0.4853 x_{3}^{5}+0.5331 x_{3}^{4}-0.3746 x_{3}^{3}+0.1644 x_{3}^{2}-0.0412 x_{3}\right. \\
& +0.0045 \quad \text { (with error of } 21.75 \%) \\
y_{22}= & 10^{15}\left(0.0425 x_{3}^{9}-0.3300 x_{3}^{8}+1.1387 x_{3}^{7}-2.2908 x_{3}^{6}+2.9604 x_{3}^{5}-2.5489 x_{3}^{4}+1.4621 x_{3}^{3}-0.5388 x_{3}^{2}\right. \\
& \left.+0.1158 x_{3}-0.0110 \quad \text { (with error of } 13.52 \%\right) \\
y_{23}= & -10^{13}\left(0.1656 x_{3}^{8}-1.1553 x_{3}^{7}+3.5247 x_{3}^{6}-6.1401 x_{3}^{5}+6.6803 x_{3}^{4}-4.64836 x_{3}^{3}+2.0201 x_{3}^{2}-0.5013 x_{3}\right. \\
& +0.0544 \quad \text { (with error of } 21.93 \%) \\
y_{5}= & 10^{13}\left(0.0029 x_{4}^{8}-0.0201 x_{4}^{7}+0.0612 x_{4}^{6}-0.1068 x_{4}^{5}+0.1162 x_{4}^{4}-0.0809 x_{4}^{3}+0.0352 x_{4}^{2}-0.0087 x_{4}\right. \\
& +0.0009) \quad \text { (with error of } 0.75 \%)
\end{aligned}
$$

$$
\begin{aligned}
y_{6}= & 10^{15}\left(-0.0004 x_{4}^{10}+0.0029 x_{4}^{9}-0.0092 x_{4}^{8}+0.0160 x_{4}^{7}-0.0163 x_{4}^{6}+0.0087 x_{4}^{5}-0.0003 x_{4}^{4}-0.0028 x_{4}^{3}+\right. \\
& \left.\left.0.0018 x_{4}^{2}-0.0005 x_{4}+0.0001\right) \quad \text { (with error of } 0.34 \%\right)
\end{aligned}
$$

$$
y_{7}=10^{13}\left(0.0005 x_{4}^{8}-0.0033 x_{4}^{7}+0.0100 x_{4}^{6}-0.0174 x_{4}^{5}+0.0190 x_{4}^{4}-0.0132 x_{4}^{3}+0.0058 x_{4}^{2}-0.0014 x_{4}\right.
$$

$$
+0.0002 \text { (with error of } 0.87 \% \text {) }
$$

$$
y_{8}=10^{15}\left(0.0167 x_{4}^{10}-0.1258 x_{4}^{9}+0.4148 x_{4}^{8}-0.7820 x_{4}^{7}+0.9156 x_{4}^{6}-0.6690 x_{4}^{5}+0.2776 x_{4}^{4}-0.0353 x_{4}^{3}\right.
$$

$$
\left.-0.0218 x_{4}^{2}+0.0106 x_{4}-0.0015\right) \quad(\text { with error of } 1.21 \%)
$$

$$
y_{9}=-10^{13}\left(0.0320 x_{4}^{8}-0.2230 x_{4}^{7}+0.6799 x_{4}^{6}-1.1839 x_{4}^{5}+1.2873 x_{4}^{4}-0.8952 x_{4}^{3}+0.3887 x_{4}^{2}-0.0964 x_{4}\right.
$$

$$
+0.0105) \quad \text { (with error of } 9.90 \% \text {) }
$$

$$
\begin{aligned}
y_{10}= & -10^{13}\left(0.0549 x_{4}^{8}-0.3833 x_{4}^{7}+1.1690 x_{4}^{6}-2.0360 x_{4}^{5}+2.2144 x_{4}^{4}-1.5402 x_{4}^{3}+0.6690 x_{4}^{2}-0.1659 x_{4}\right. \\
& +0.0180) \quad \text { (with error of } 10.86 \%)
\end{aligned}
$$

$$
y_{11}=10^{9}\left(0.0048 x_{4}^{6}-0.0252 x_{4}^{5}+0.0552 x_{4}^{4}-0.0644 x_{4}^{3}+0.0422 x_{4}^{2}+0.0148 x_{4}+0.0021\right) \quad(\text { with error of } 3.57 \%)
$$

$$
y_{12}=-10^{13}\left(0.0757 x_{4}^{8}-0.5282 x_{4}^{7}+1.6112 x_{4}^{6}-2.8066 x_{4}^{5}+3.0529 x_{4}^{4}-2.1238 x_{4}^{3}+0.9227 x_{4}^{2}-0.2289 x_{4}\right.
$$

$$
+0.0248) \quad(\text { with error of } 9.28 \%)
$$

$$
y_{13}=10^{11}\left(-0.0487 x_{4}^{7}+0.2997 x_{4}^{6}-0.7894 x_{4}^{5}+1.1540 x_{4}^{4}-1.0112 x_{4}^{3}+0.5311 x_{4}^{2}-0.1548 x_{4}\right.
$$

$$
+0.0193) \quad(\text { with error of } 8.44 \%)
$$

$$
y_{14}=10^{15}\left(0.0053 x_{4}^{9}-0.0408 x_{4}^{8}+0.1393 x_{4}^{7}-0.2773 x_{4}^{6}+0.3546 x_{4}^{5}-0.3019 x_{4}^{4}+0.1712 x_{4}^{3}-0.0623 x_{4}^{2}\right.
$$

$$
\left.+0.0132 x_{4}-0.0012\right) \quad(\text { with error of } 3.88 \%)
$$

$$
\begin{equation*}
y_{15}=10^{3}\left(0.4151 x_{4}^{3}-1.1333 x_{4}^{2}+1.0240 x_{4}-0.3056\right) \quad(\text { with error of } 11.45 \%) \tag{38}
\end{equation*}
$$

$$
y_{16}=10^{15}\left(-0.0088 x_{4}^{10}+0.0645 x_{4}^{9}-0.2065 x_{4}^{8}+0.3729 x_{4}^{7}-0.4066 x_{4}^{6}+0.2572 x_{4}^{5}-0.0661 x_{4}^{4}-0.0264 x_{4}^{3}\right.
$$

$$
\left.+0.0278 x_{4}^{2}-0.0090 x_{4}+0.0011\right) \quad(\text { with error of } 6.11 \%)
$$

$$
y_{17}=10^{13}\left(0.0245 x_{4}^{8}-0.1708 x_{4}^{7}+0.5203 x_{4}^{6}-0.9051 x_{4}^{5}+0.9833 x_{4}^{4}-0.6831 x_{4}^{3}+0.2964 x_{4}^{2}-0.0734 x_{4}\right.
$$

$$
+0.0080 \text {) (with error of } 11.96 \% \text {) }
$$

$$
y_{18}=10^{11}\left(-0.0144 x_{4}^{7}+0.0885 x_{4}^{6}-0.2334 x_{4}^{5}+0.3416 x_{4}^{4}-0.2997 x_{4}^{3}+0.1576 x_{4}^{2}-0.0460 x_{4}\right.
$$

$$
+0.0058 \text {) (with error of } 13.67 \% \text {) }
$$

$$
y_{19}=10^{15}\left(0.0149 x_{4}^{9}-0.1171 x_{4}^{8}+0.4078 x_{4}^{7}-0.8282 x_{4}^{6}+1.0804 x_{4}^{5}-0.9391 x_{4}^{4}+0.5439 x_{4}^{3}-0.2024 x_{4}^{2}\right.
$$

$$
\left.+0.0439 x_{4}-0.0042\right) \quad(\text { with error of } 3.87 \%)
$$

$$
\begin{aligned}
y_{20}= & 10^{15}\left(0.0060 x_{4}^{9}-0.0469 x_{4}^{8}+0.1629 x_{4}^{7}-0.3302 x_{4}^{6}+0.4301 x_{4}^{5}-0.3731 x_{4}^{4}+0.2157 x_{4}^{3}-0.0801 x_{4}^{2}\right. \\
& \left.+0.0173 x_{4}-0.0017\right) \quad(\text { with error of } 11.26 \%) \\
y_{21}= & -10^{13}\left(0.1083 x_{4}^{8}-0.7569 x_{4}^{7}+2.3119 x_{4}^{6}-4.0320 x_{4}^{5}+4.3915 x_{4}^{4}-3.0589 x_{4}^{3}+1.3307 x_{4}^{2}-0.3305 x_{4}\right. \\
& +0.0359) \quad(\text { with error of } 15.56 \%) \\
y_{22}= & -10^{13}\left(0.1053 x_{4}^{8}-0.7356 x_{4}^{7}+2.2472 x_{4}^{6}-3.9198 x_{4}^{5}+4.2699 x_{4}^{4}-2.9746 x_{4}^{3}+1.2942 x_{4}^{2}-0.3215 x_{4}\right. \\
& +0.0349) \quad(\text { with error of } 16.09 \%) \\
y_{23}= & -10^{9}\left(0.0412 x_{4}^{6}-0.2189 x_{4}^{5}+0.4836 x_{4}^{4}-0.5693 x_{4}^{3}+0.3765 x_{4}^{2}+0.1327 x_{4}\right. \\
& +0.0195) \quad(\text { with error of } 25.29 \%)
\end{aligned}
$$

$$
y_{6}=10^{15}\left(0.0006 x_{5}^{9}-0.0041 x_{5}^{8}+0.0015 x_{5}^{7}-0.0169 x_{5}^{6}+0.0127 x_{5}^{5}-0.0020 x_{5}^{4}-0.0046 x_{5}^{3}+0.0041 x_{5}^{2}-0.0015 x_{5}\right.
$$

$$
\begin{equation*}
+0.0002) \quad(\text { with error of } 0.08 \%) \tag{47}
\end{equation*}
$$

$$
\begin{equation*}
y_{7}=10^{15}\left(0.0004 x_{5}^{9}-0.0026 x_{5}^{8}+0.0086 x_{5}^{7}-0.0162 x_{5}^{6}+0.0192 x_{5}^{5}-0.0148 x_{5}^{4}+0.0073 x_{5}^{3}-0.0022 x_{5}^{2}\right. \tag{48}
\end{equation*}
$$

$$
\left.+0.0004 x_{5}\right) \quad(\text { with error of } 0.31 \%)
$$

$$
\begin{equation*}
y_{8}=10^{15}\left(0.0071 x_{5}^{9}-0.0475 x_{5}^{8}+0.1333 x_{5}^{7}-0.1975 x_{5}^{6}+0.1511 x_{5}^{5}-0.0281 x_{5}^{4}-0.0502 x_{5}^{3}+0.0461 x_{5}^{2}+0.0166 x_{5}\right. \tag{49}
\end{equation*}
$$

$$
+0.0023 \text {) (with error of } 1.38 \% \text {) }
$$

$$
\begin{equation*}
y_{9}=10^{12}\left(0.0561 x_{5}^{7}-0.3624 x_{5}^{6}+1.0022 x_{5}^{5}-1.5392 x_{5}^{4}+1.4179 x_{5}^{3}-0.7835 x_{5}^{2}\right. \tag{50}
\end{equation*}
$$

$$
\left.+0.2404 x_{5}-0.0316\right) \quad(\text { with error of } 2.69 \%)
$$

$$
\begin{equation*}
y_{10}=10^{15}\left(0.0068 x_{5}^{9}-0.0398 x_{5}^{8}+0.0858 x_{5}^{7}-0.05464 x_{5}^{6}-0.1022 x_{5}^{5}+0.2561 x_{5}^{4}-0.2557 x_{5}^{3}+0.1394 x_{5}^{2}\right. \tag{51}
\end{equation*}
$$

$$
\left.-0.0408 x_{5}+0.0051\right) \quad(\text { with error of } 5.91 \%)
$$

$$
\begin{equation*}
y_{11}=10^{5}\left(0.3563 x_{5}^{4}-1.3260 x_{5}^{3}+1.8491 x_{5}^{2}+1.1451 x_{5}+0.2657 \quad(\text { with error of } 8.09 \%)\right. \tag{52}
\end{equation*}
$$

$$
\begin{equation*}
y_{12}=10^{15}\left(0.0080 x_{5}^{9}-0.0535 x_{5}^{8}+0.1506 x_{5}^{7}-0.2247 x_{5}^{6}+0.1751 x_{5}^{5}-0.0379 x_{5}^{4}-0.0516 x_{5}^{3}+0.0496 x_{5}^{2}\right. \tag{53}
\end{equation*}
$$

$$
\left.-0.0181 x_{5}+0.0025\right) \quad(\text { with error of } 13.20 \%)
$$

$$
\begin{equation*}
y_{13}=10^{12}\left(0.0038 x_{5}^{7}-0.0237 x_{5}^{6}+0.0642 x_{5}^{5}-0.0963 x_{5}^{4}+0.0867 x_{5}^{3}-0.0468 x_{5}^{2}\right. \tag{54}
\end{equation*}
$$

$$
\left.+0.0140 x_{5}-0.0018\right) \quad(\text { with error of } 7.50 \%)
$$

$$
\begin{equation*}
y_{14}=-35.3738 x_{5}^{2}-59.2782 x_{5}-23.8713 \quad(\text { with error of } 22.59 \%) \tag{55}
\end{equation*}
$$

$y_{15}=10^{12}\left(0.0346 x_{5}^{7}-0.2231 x_{5}^{6}+0.6161 x_{5}^{5}-0.9447 x_{5}^{4}+0.8689 x_{5}^{3}-0.4794 x_{5}^{2}\right.$
$+0.1469 x_{5}-0.0193$) (with error of 8.65%)
$y_{16}=-10^{12}\left(0.0323 x_{5}^{7}-0.2082 x_{5}^{6}+0.5755 x_{5}^{5}-0.8835 x_{5}^{4}+0.8136 x_{5}^{3}-0.4494 x_{5}^{2}\right.$
$+0.1379 x_{5}-0.0181$) (with error of 6.34%)
$y_{17}=-10^{12}\left(0.0430 x_{5}^{7}-0.2779 x_{5}^{6}+0.7687 x_{5}^{5}-1.1808 x_{5}^{4}+1.0880 x_{5}^{3}-0.6013 x_{5}^{2}\right.$
$+0.1846 x_{5}-0.0243$) (with error of 12.59%)
$y_{18}=10^{7}\left(-0.3842 x_{5}^{5}+1.7913 x_{5}^{4}-3.3391 x_{5}^{3}+3.1106 x_{5}^{2}-1.4481 x_{5}\right.$
+0.2695 (with error of 12.11%)
$y_{19}=10^{15}\left(0.0044 x_{5}^{9}-0.0320 x_{5}^{8}+0.1011 x_{5}^{7}-0.1816 x_{5}^{6}+0.2021 x_{5}^{5}-0.1418 x_{5}^{4}+0.0602 x_{5}^{3}\right.$
$-0.0133 x_{5}^{2}+0.0007 x_{5}+0.0002$) (with error of 2.65%)
$y_{20}=10^{3}\left(-1.2437 x_{5}^{3}+3.4712 x_{5}^{2}-3.2274 x_{5}+1.0005 \quad\right.$ (with error of 19.14%)
$y_{21}=10^{15}\left(-0.0191 x_{5}^{8}+0.1406 x_{5}^{7}-0.4526 x_{5}^{6}+0.8321 x_{5}^{5}-0.9559 x_{5}^{4}+0.7026 x_{5}^{3}-0.3227 x_{5}^{2}\right.$
$+0.0847 x_{5}-0.0097$) (with error of 12.57%)

$$
\begin{aligned}
y_{22}= & 10^{15}\left(-0.0193 x_{5}^{8}+0.1653 x_{5}^{7}-0.5309 x_{5}^{6}+0.9738 x_{5}^{5}-1.1162 x_{5}^{4}+0.8186 x_{5}^{3}-0.3751 x_{5}^{2}\right. \\
& \left.+0.0982 x_{5}-0.0112\right) \quad(\text { with error of } 12.18 \%) \\
y_{23}= & 10^{15}\left(-0.0225 x_{5}^{8}+0.1653 x_{5}^{7}-0.5309 x_{5}^{6}+0.9738 x_{5}^{5}-1.1162 x_{5}^{4}+0.8186 x_{5}^{3}-0.3751 x_{5}^{2}\right. \\
& \left.+0.0982 x_{5}-0.0112\right) \quad(\text { with error of } 13.13 \%) \\
y_{7}= & 10^{12}\left(0.0029 x_{6}^{7}-0.0188 x_{6}^{6}+0.0518 x_{6}^{5}-0.0796 x_{6}^{4}+0.0733 x_{6}^{3}-0.0404 x_{6}^{2}\right. \\
& \left.+0.0124 x_{6}-0.0016\right) \quad(\text { with error of } 0.73 \%) \\
y_{8}= & 10^{15}\left(0.0017 x_{6}^{8}-0.0125 x_{6}^{7}+0.0403 x_{6}^{6}-0.0743 x_{6}^{5}+0.0855 x_{6}^{4}-0.0630 x_{6}^{3}+0.0290 x_{6}^{2}-0.0076 x_{6}\right. \\
& +0.0009) \quad(\text { with error of } 1.45 \%) \\
y_{9}= & 10^{12}\left(0.0554 x_{6}^{7}-0.3575 x_{6}^{6}+0.9876 x_{6}^{5}-1.5153 x_{6}^{4}+1.3944 x_{6}^{3}-0.7696 x_{6}^{2}\right. \\
& \left.+0.2359 x_{6}-0.0310\right) \quad(\text { with error of } 8.53 \%) \\
y_{10}= & -10^{12}\left(0.0839 x_{6}^{7}-0.5407 x_{6}^{6}+1.4937 x_{6}^{5}-2.2916 x_{6}^{4}+2.1086 x_{6}^{3}-1.1636 x_{6}^{2}\right. \\
& \left.+0.3566 x_{6}-0.0468\right) \quad(\text { with error of } 6.84 \%)
\end{aligned}
$$

$$
y_{11}=-10^{15}\left(0.0008 x_{6}^{9}-0.0005 x_{6}^{8}-0.0199 x_{6}^{7}+0.0895 x_{6}^{6}-0.1873 x_{6}^{5}+0.2304 x_{6}^{4}-0.1765 x_{6}^{3}\right.
$$

$$
\left.+0.0833 x_{6}^{2}-0.0223 x_{6}+0.0026\right) \quad(\text { with error of } 6.29 \%)
$$

$$
y_{12}=-10^{12}\left(0.0822 x_{6}^{7}-0.5300 x_{6}^{6}+1.4642 x_{6}^{5}-2.2464 x_{6}^{4}+2.0672 x_{6}^{3}-1.1409 x_{6}^{2}\right.
$$

$$
\left.+0.3497 x_{6}-0.0459\right) \quad(\text { with error of } 16.97 \%)
$$

$$
y_{13}=10^{5}\left(-0.0584 x_{6}^{4}+0.2191 x_{6}^{3}-0.3080 x_{6}^{2}+0.1925 x_{6}-0.0451\right) \quad(\text { with error of } 14.53 \%)
$$

$$
y_{14}=10^{8}\left(0.0241 x_{6}^{5}-0.1126 x_{6}^{4}+0.2106 x_{6}^{3}-0.1968 x_{6}^{2}+0.0919 x_{6}-0.0172\right) \quad(\text { with error of } 13.02 \%)
$$

$$
y_{15}=-10^{12}\left(0.0496 x_{6}^{7}-0.3199 x_{6}^{6}+0.8838 x_{6}^{5}-1.3562 x_{6}^{4}+1.2482 x_{6}^{3}-0.6890 x_{6}^{2}\right.
$$

$$
\left.+0.2112 x_{6}-0.0277\right) \quad(\text { with error of } 10.54 \%)
$$

$$
y_{16}=10^{15}\left(0.0041 x_{6}^{8}-0.0301 x_{6}^{7}+0.0966 x_{6}^{6}-0.1772 x_{6}^{5}+0.2031 x_{6}^{4}-0.1489 x_{6}^{3}+0.0682 x_{6}^{2}-0.0179 x_{6}\right.
$$

$$
+0.0020) \quad(\text { with error of } 5.52 \%)
$$

$$
y_{17}=10^{15}\left(0.0098 x_{6}^{9}-0.0453 x_{6}^{8}+0.0356 x_{6}^{7}+0.2028 x_{6}^{6}-0.6620 x_{6}^{5}+0.9574 x_{6}^{4}-0.7988 x_{6}^{3}+0.3975 x_{6}^{2}\right.
$$

$$
\left.-0.1102 x_{6}+0.0132\right) \quad(\text { with error of } 12.22 \%)
$$

$$
y_{18}=-10^{12}\left(0.0064 x_{6}^{7}-0.0412 x_{6}^{6}+0.1140 x_{6}^{5}-0.1749 x_{6}^{4}+0.1611 x_{6}^{3}-0.0889 x_{6}^{2}\right.
$$

$$
\left.+0.0273 x_{6}-0.0036\right) \quad(\text { with error of } 12.78 \%)
$$

$$
y_{19}=10^{10}\left(0.0475 x_{6}^{6}-0.2638 x_{6}^{5}+0.6098 x_{6}^{4}-0.7515 x_{6}^{3}+0.5207 x_{6}^{2}-0.1923 x_{6}\right.
$$

$$
+0.0296) \quad(\text { with error of } 7.01 \%)
$$

$$
y_{20}=10^{15}\left(0.0027 x_{6}^{9}-0.0302 x_{6}^{8}+0.1397 x_{6}^{7}-0.3608 x_{6}^{6}+0.5812 x_{6}^{5}-0.6105 x_{6}^{4}+0.4203 x_{6}^{3}-0.1836 x_{6}^{2}\right.
$$

$$
\begin{equation*}
\left.+0.0463 x_{6}-0.0051\right) \quad(\text { with error of } 3.32 \%) \tag{79}
\end{equation*}
$$

$y_{21}=2.4420 x_{6}+2.4079$ (with error of 25.78%)
$y_{22}=-2.1765 x_{6}+2.1675 \quad$ (with error of 24.75%)
$y_{23}=10^{15}\left(0.0303 x_{6}^{8}-0.2223 x_{6}^{7}+0.7128 x_{6}^{6}-1.3059 x_{6}^{5}+1.4948 x_{6}^{4}-1.0947 x_{6}^{3}+0.5009 x_{6}^{2}-0.1309 x_{6}\right.$
+0.0150) (with error of 2.07%)
$y_{8}=10^{15}\left(0.0278 x_{7}^{8}-0.1869 x_{7}^{7}+0.5340 x_{7}^{6}-0.8350 x_{7}^{5}+0.7613 x_{7}^{4}-0.3899 x_{7}^{3}+0.0887 x_{7}^{2}\right.$
$+0.0041 x_{7}-0.0041$) (with error of 6.59)

$$
\begin{align*}
& y_{9}=-10^{15}\left(0.0475 x_{7}^{8}-0.3243 x_{7}^{7}+0.9443 x_{7}^{6}-1.5186 x_{7}^{5}+1.4493 x_{7}^{4}-0.8109 x_{7}^{3}\right. \tag{83}\\
& \left.+0.2363 x_{7}^{2}-0.0207 x_{7}-0.0031\right) \quad(\text { with error of 13.61) } \\
& y_{10}=10^{13}\left(-0.0347 x_{7}^{6}+0.2045 x_{7}^{5}-0.5030 x_{7}^{4}+0.6597 x_{7}^{3}-0.4866 x_{7}^{2}\right. \tag{84}\\
& \left.+0.1915 x_{7}-0.0314\right) \quad(\text { with error of } 45.14 \%) \\
& y_{11}=-10^{15}\left(0.0300 x_{7}^{8}-0.1963 x_{7}^{7}+0.5384 x_{7}^{6}-0.7888 x_{7}^{5}+0.6369 x_{7}^{4}-0.2390 x_{7}^{3}-0.0116 x_{7}^{2}\right. \tag{85}\\
& \left.+0.0396 x_{7}-0.0093\right) \quad(\text { with error of } 16.46) \\
& y_{12}=-10^{15}\left(0.0753 x_{7}^{8}-0.5011 x_{7}^{7}+1.4085 x_{7}^{6}-2.1465 x_{7}^{5}+1.8699 x_{7}^{4}-0.8647 x_{7}^{3}+0.1263 x_{7}^{2}\right. \tag{86}\\
& \left.+0.0487 x_{7}-0.0164\right) \quad(\text { with error of 23.03) } \\
& y_{13}=10^{13}\left(-0.0350 x_{7}^{6}+0.2064 x_{7}^{5}-0.5078 x_{7}^{4}+0.6663 x_{7}^{3}-0.4918 x_{7}^{2}\right. \tag{87}\\
& +0.1936 x_{7}-0.0317 \text {) (with error of } 21.35 \% \text {) } \\
& y_{14}=-10^{15}\left(-0.0333 x_{7}^{8}+0.2190 x_{7}^{7}-0.6037 x_{7}^{6}+0.8903 x_{7}^{5}-0.7268 x_{7}^{4}+0.2808 x_{7}^{3}+0.0060 x_{7}^{2}-0.0424 x_{7}\right. \tag{88}\\
& +0.0102 \text {) (with error of } 30.28 \% \text {) } \\
& y_{15}=-10^{13}\left(-0.0413 x_{7}^{6}+0.2442 x_{7}^{5}-0.6011 x_{7}^{4}+0.7891 x_{7}^{3}-0.5828 x_{7}^{2}\right. \tag{89}\\
& \left.+0.2295 x_{7}-0.0377 \text {) (with error of } 15.42 \%\right) \\
& \left.y_{16}=10^{8}\left(0.0541 x_{7}^{4}-0.2135 x_{7}^{3}+0.3162 x_{7}^{2}-0.2080 x_{7}+0.0513\right) \quad \text { (with error of } 22.68 \%\right) \tag{90}\\
& y_{17}=10^{8}\left(-0.0270 x_{7}^{4}+0.1053 x_{7}^{3}-0.1543 x_{7}^{2}+0.1004 x_{7}-0.0245\right) \quad(\text { with error of } 9.58 \%) \tag{91}\\
& y_{18}=-10^{13}\left(-0.0291 x_{7}^{6}+0.1722 x_{7}^{5}-0.4242 x_{7}^{4}+0.5573 x_{7}^{3}-0.4118 x_{7}^{2}\right. \tag{92}\\
& +0.1623 x_{7}-0.0267 \text {) (with error of } 15.13 \% \text {) } \\
& y_{19}=-10^{12}\left(0.0243 x_{6}^{7}-0.1573 x_{6}^{6}+0.4359 x_{6}^{5}-0.6707 x_{6}^{4}+0.6189 x_{6}^{3}-0.3425 x_{6}^{2}\right. \tag{93}\\
& +0.1053 x_{6}-0.0139 \text {) (with error of } 7.09 \% \text {) } \\
& y_{20}=10^{15}\left(-0.0158 x_{7}^{8}+0.0999 x_{7}^{7}-0.2604 x_{7}^{6}+0.3477 x_{7}^{5}-0.2248 x_{7}^{4}+0.0172 x_{7}^{3}+0.0702 x_{7}^{2}-0.0419 x_{7}\right. \tag{94}\\
& +0.0079 \text { (with error of } 4.47 \% \text {) } \\
& y_{21}=10^{3}\left(-0.7980 x_{7}^{2}+1.5607 x_{7}-0.7627\right) \quad(\text { with error of } 27.74 \%) \tag{95}\\
& y_{22}=10^{3}\left(-0.6919 x_{7}^{2}+1.3519 x_{7}-0.6601\right) \quad(\text { with error of } 26.65 \%) \tag{96}\\
& y_{23}=10^{14}\left(0.0551 x_{7}^{7}-0.3837 x_{7}^{6}+1.1445 x_{7}^{5}-1.8964 x_{7}^{4}+1.8853 x_{7}^{3}-1.1245 x_{7}^{2}\right. \tag{97}\\
& +0.3726 x_{7}-0.0529 \text {) (with error of } 1.25 \% \text {) } \\
& y_{9}=10^{13}\left(0.0544 x_{8}^{7}-0.3530 x_{8}^{6}+0.9785 x_{8}^{5}-1.5013 x_{8}^{4}+1.3759 x_{8}^{3}-0.7528 x_{8}^{2}\right. \\
& +0.2275 x_{8}-0.0293 \text {) (with error of } 15.16 \% \text {) } \tag{98}\\
& y_{10}=10^{13}\left(0.0290 x_{8}^{7}-0.1880 x_{8}^{6}+0.5204 x_{8}^{5}-0.7973 x_{8}^{4}+0.7297 x_{8}^{3}-0.3987 x_{8}^{2}\right. \tag{99}\\
& +0.1203 x_{8}-0.0155 \text {) (with error of } 8.74 \% \text {) } \\
& y_{11}=10^{10}\left(0.1902 x_{8}^{6}-1.0453 x_{8}^{5}+2.3820 x_{8}^{4}-2.8793 x_{8}^{3}+1.9454 x_{8}^{2}-0.6958 x_{8}\right. \tag{100}\\
& +0.1028 \text {) (with error of 9.74\%) } \\
& y_{12}=10^{13}\left(0.0638 x_{8}^{7}-0.4140 x_{8}^{6}+1.1472 x_{8}^{5}-1.7593 x_{8}^{4}+1.6117 x_{8}^{3}-0.8814 x_{8}^{2}\right. \tag{101}\\
& +0.2663 x_{8}-0.0342 \text {) (with error of } 3.68 \% \text {) } \\
& y_{13}=10^{10}\left(0.3883 x_{8}^{6}-2.1374 x_{8}^{5}+4.8792 x_{8}^{4}-5.9078 x_{8}^{3}+3.9983 x_{8}^{2}-1.4324 x_{8}\right. \tag{102}\\
& +0.2119 \text {) (with error of } 15.42 \% \text {) }
\end{align*}
$$

$$
\begin{equation*}
y_{18}=10^{10}\left(-0.0029 x_{9}^{10}+0.0198 x_{9}^{9}-0.0590 x_{9}^{8}+0.1022 x_{9}^{7}-0.1132 x_{9}^{6}+0.0834 x_{9}^{5}-0.0411 x_{9}^{4}+0.0132 x_{9}^{3}\right. \tag{121}
\end{equation*}
$$

$$
\left.-0.0026 x_{9}^{2}+0.0003 x_{9}\right) \quad(\text { with error of } 8.15 \%)
$$

$$
\begin{align*}
& y_{14}=10^{8}\left(0.3920 x_{8}^{5}-1.7743 x_{8}^{4}+3.1896 x_{8}^{3}-2.8429 x_{8}^{2}\right. \tag{103}\\
& +1.2542 x_{8}-0.2186 \text {) (with error of } 19.47 \% \text {) } \\
& y_{15}=10^{10}\left(0.1835 x_{8}^{6}-1.0083 x_{8}^{5}+2.2972 x_{8}^{4}-2.7761 x_{8}^{3}+1.8753 x_{8}^{2}-0.6706 x_{8}\right. \tag{104}\\
& +0.0990 \text {) (with error of } 6.40 \% \text {) } \\
& y_{16}=10^{15}\left(-0.0002 x_{8}^{8}+0.0011 x_{8}^{7}-0.0018 x_{8}^{6}+0.0001 x_{8}^{5}+0.0038 x_{8}^{4}-0.0056 x_{8}^{3}+0.0038 x_{8}^{2}-0.0013 x_{8}\right. \tag{105}\\
& +0.0002 \text {) (with error of } 11.99 \% \text {) } \\
& y_{17}=10^{15}\left(-0.0017 x_{8}^{8}+0.012 x_{8}^{7}-0.0368 x_{8}^{6}+0.0638 x_{8}^{5}-0.06878 x_{8}^{4}-0.0470 x_{8}^{3}-0.0199 x_{8}^{2}\right. \tag{106}\\
& +0.0048 x_{8}-0.0005 \text {) (with error of 5.99\%) } \\
& \left.y_{18}=-10^{8}\left(0.1673 x_{8}^{5}-0.7569 x_{8}^{4}+1.3606 x_{8}^{3}-1.2127 x_{8}^{2}+0.5350 x_{8}-0.0932\right) \quad \text { (with error of } 13.51 \%\right) \tag{107}\\
& y_{19}=0.7973 x_{8}-0.1898 \quad \text { (with error of } 14.88 \% \text {) } \tag{108}\\
& \left.y_{20}=-9.1630 x_{8}^{2}+14.0679 x_{8}-4.1517 \quad \text { (with error of } 18.57 \%\right) \tag{109}\\
& y_{21}=10^{13}\left(0.2521 x_{8}^{7}-1.6372 x_{8}^{6}+4.5410 x_{8}^{5}-6.9704 x_{8}^{4}+6.3915 x_{8}^{3}-3.4987 x_{8}^{2}\right. \tag{110}\\
& +1.0578 x_{8}-0.1361 \text {) (with error of } 13.22 \% \text {) } \\
& y_{22}=10^{15}\left(-0.0013 x_{8}^{8}+0.0125 x_{8}^{7}-0.0491 x_{8}^{6}+0.1068 x_{8}^{5}-0.1413 x_{8}^{4}-0.1172 x_{8}^{3}-0.0596 x_{8}^{2}\right. \tag{111}\\
& +0.0171 x_{8}-0.0021 \text {) (with error of } 9.47 \% \text {) } \\
& y_{23}=10^{15}\left(-0.0236 x_{8}^{8}+0.1768 x_{8}^{7}-0.5789 x_{8}^{6}+1.0802 x_{8}^{5}-1.2555 x_{8}^{4}-0.9305 x_{8}^{3}-0.4293 x_{8}^{2}\right. \tag{112}\\
& +0.1126 x_{8}-0.0129 \text {) (with error of } 10.24 \% \text {) } \\
& y_{10}=10^{7}\left(0.0230 x_{9}^{10}-0.1572 x_{9}^{9}+0.4755 x_{9}^{8}-0.8345 x_{9}^{7}+0.9371 x_{9}^{6}-0.7001 x_{9}^{5}+0.3497 x_{9}^{4}-0.1140 x_{9}^{3}\right. \tag{113}\\
& +0.0228 x_{9}^{2}-0.0024 x_{9}+0.0001 \text {) (with error of } 1.87 \% \text {) } \\
& y_{11}=10^{10}\left(0.0315 x_{9}^{7}-0.1476 x_{9}^{6}+0.2832 x_{9}^{5}-0.2850 x_{9}^{4}+0.1599 x_{9}^{3}-0.0486 x_{9}^{2}\right. \tag{114}\\
& +0.0071 x_{9}-0.0003 \text {) (with error of } 5.05 \% \text {) } \\
& y_{12}=10^{10}\left(0.0519 x_{9}^{10}-0.3551 x_{9}^{9}+1.0733 x_{9}^{8}-1.8819 x_{9}^{7}+2.1119 x_{9}^{6}-2.5767 x_{9}^{5}+0.7870 x_{9}^{4}\right. \tag{115}\\
& \left.-0.2564 x_{9}^{3}+0.0512 x_{9}^{2}-0.0055 x_{9}+0.0002 \text {) (with error of } 2.42 \%\right) \\
& y_{13}=10^{10}\left(-0.0017 x_{9}^{10}+0.0116 x_{9}^{9}-0.0354 x_{9}^{8}+0.0627 x_{9}^{7}-0.0711 x_{9}^{6}+0.0536 x_{9}^{5}-0.0270 x_{9}^{4}+0.0089 x_{9}^{3}\right. \\
& -0.0018 x_{9}^{2}+0.0002 x_{9} \text {) (with error of } 0.23 \% \text {) } \tag{116}\\
& y_{14}=10^{10}\left(-0.0388 x_{9}^{10}+0.2659 x_{9}^{9}-0.8043 x_{9}^{8}+1.4116 x_{9}^{7}-1.5855 x_{9}^{6}+1.1847 x_{9}^{5}-0.5919 x_{9}^{4}\right. \tag{117}\\
& \left.+0.1930 x_{9}^{3}-0.0386 x_{9}^{2}+0.0041 x_{9}-0.0002\right) \quad(\text { with error of } 15.84 \%) \\
& y_{15}=10^{10}\left(-0.0171 x_{9}^{10}+0.1170 x_{9}^{9}-0.3534 x_{9}^{8}+0.6194 x_{9}^{7}-0.6949 x_{9}^{6}+0.5186 x_{9}^{5}-0.2588 x_{9}^{4}\right. \tag{118}\\
& +0.0843 x_{9}^{3}-0.0168 x_{9}^{2}+0.0018 x_{9}-0.0001 \text {) (with error of } 2.44 \% \text {) } \\
& y_{16}=10^{10}\left(-0.0034 x_{9}^{10}+0.0232 x_{9}^{9}-0.0693 x_{9}^{8}+0.1200 x_{9}^{7}-0.1330 x_{9}^{6}+0.0981 x_{9}^{5}-0.0484 x_{9}^{4}\right. \tag{119}\\
& \left.+0.0156 x_{9}^{3}-0.0031 x_{9}^{2}+0.0003 x_{9}\right) \quad \text { (with error of } 7.44 \% \text {) } \\
& y_{17}=10^{10}\left(-0.0433 x_{9}^{10}+0.2955 x_{9}^{9}-0.8915 x_{9}^{8}+1.5603 x_{9}^{7}-1.7479 x_{9}^{6}+1.3027 x_{9}^{5}-0.6492 x_{9}^{4}\right. \tag{120}\\
& \left.+0.2112 x_{9}^{3}-0.0421 x_{9}^{2}+0.0045 x_{9}-0.0002 \text {) (with error of } 6.34 \%\right)
\end{align*}
$$

$$
\begin{align*}
y_{19}= & 10^{8}\left(0.0251 x_{9}^{9}-0.1519 x_{9}^{8}+0.3990 x_{9}^{7}-0.5947 x_{9}^{6}+0.5513 x_{9}^{5}-0.3269 x_{9}^{4}+0.1224 x_{9}^{3}-0.0273 x_{9}^{2}\right. \tag{122}\\
& \left.\left.+0.0032 x_{9}-0.0001\right) \quad \text { (with error of } 4.21 \%\right) \\
y_{20}= & 10^{8}\left(-0.0284 x_{9}^{9}+0.1717 x_{9}^{8}-0.4506 x_{9}^{7}+0.6710 x_{9}^{6}-0.6215 x_{9}^{5}+0.3682 x_{9}^{4}-0.1377 x_{9}^{3}+0.0307 x_{9}^{2}\right. \tag{123}\\
& \left.\left.-0.0036 x_{9}+0.0002\right) \quad \text { (with error of } 16.73 \%\right) \\
y_{21}= & 10^{10}\left(-0.0296 x_{9}^{10}+0.2031 x_{9}^{9}-0.6153 x_{9}^{8}+1.0816 x_{9}^{7}-1.2168 x_{9}^{6}+0.9106 x_{9}^{5}-0.4556 x_{9}^{4}+0.1488 x_{9}^{3}\right. \\
& \left.\left.-0.0298 x_{9}^{2}+0.0032 x_{9}-0.0001\right) \quad \text { (with error of } 24.94 \%\right) \tag{124}\\
y_{22}= & 10^{10}\left(-0.0333 x_{9}^{10}+0.2284 x_{9}^{9}-0.6916 x_{9}^{8}+1.2152 x_{9}^{7}-1.3665 x_{9}^{6}+1.0222 x_{9}^{5}-0.5112 x_{9}^{4}+0.1669 x_{9}^{3}\right. \tag{125}\\
& \left.\left.-0.0334 x_{9}^{2}+0.0036 x_{9}-0.0001\right) \quad \text { (with error of } 20.73 \%\right) \\
y_{23}= & 10^{5}\left(0.1447 x_{9}^{7}-0.6583 x_{9}^{6}+1.2356 x_{9}^{5}-1.2269 x_{9}^{4}+0.6840 x_{9}^{3}-0.2080 x_{9}^{2}\right. \tag{126}\\
& \left.\left.+0.0303 x_{9}-0.0015\right) \quad \text { (with error of } 26.32 \%\right) \\
y_{11}= & 10^{9}\left(0.0243 x_{10}^{8}-0.1515 x_{10}^{7}+0.4067 x_{10}^{6}-0.6130 x_{10}^{5}+0.5649 x_{10}^{4}-0.3238 x_{10}^{3}+0.1116 x_{10}^{2}-0.0207 x_{10}\right. \tag{127}\\
& +0.0015) \quad \text { (with error of } 6.76 \%) \\
y_{12}= & 10^{11}\left(0.0263 x_{10}^{9}-0.1879 x_{10}^{8}+0.5900 x_{10}^{7}-1.0664 x_{10}^{6}+1.2193 x_{10}^{5}-0.9110 x_{10}^{4}+0.4421 x_{10}^{3}-0.1332 x_{10}^{2}\right. \tag{128}\\
& \left.\left.+0.0222 x_{10}-0.0015\right) \quad \text { (with error of } 0.82 \%\right) \\
y_{13}= & 10^{11}\left(-0.0708 x_{10}^{9}+0.5065 x_{10}^{8}-1.5922 x_{10}^{7}+2.8807 x_{10}^{6}-3.2969 x_{10}^{5}+2.4655 x_{10}^{4}-1.1977 x_{10}^{3}+0.3611 x_{10}^{2}\right. \tag{129}\\
& \left.\left.-0.0603 x_{10}+0.0041\right) \quad \text { (with error of } 10.43 \%\right)
\end{align*}
$$

$$
\begin{equation*}
y_{17}=10^{11}\left(-0.0108 x_{10}^{9}+0.0770 x_{10}^{8}-0.2410 x_{10}^{7}+0.4343 x_{10}^{6}-0.4952 x_{10}^{5}+0.3689 x_{10}^{4}-0.1786 x_{10}^{3}+0.0537 x_{10}^{2}\right. \tag{133}
\end{equation*}
$$

$y_{20}=-10^{7}\left(0.0175 x_{10}^{7}-0.0939 x_{10}^{6}+0.2113 x_{10}^{5}-0.2578 x_{10}^{4}+0.1828 x_{10}^{3}-0.0744 x_{10}^{2}\right.$ $+0.0157 x_{10}-0.0013$) (with error of 16.67%)
$y_{21}=5.1263 x_{10}^{3}-0.95237 x_{10}^{2}+5.4239 x_{10}-0.7038 \quad$ (with error of 22.89%)
$y_{22}=99.3243 x_{10}^{4}-269.4538 x_{10}^{3}+256.4748 x_{10}^{2}-96.8644 x_{10}+10.8853 \quad$ (with error of 20.29%)
$y_{23}=10^{7}\left(0.0383 x_{10}^{7}-0.1983 x_{10}^{6}+0.4317 x_{10}^{5}-0.5092 x_{10}^{4}+0.3492 x_{10}^{3}-0.1376 x_{10}^{2}\right.$
$+0.0282 x_{10}-0.0022$) (with error of 8.58%)
$y_{12}=10^{11}\left(0.0154 x_{11}^{10}-0.1081 x_{11}^{9}+0.3357 x_{11}^{8}-0.6034 x_{11}^{7}+0.6913 x_{11}^{6}-0.5236 x_{11}^{5}+0.2625 x_{11}^{4}-0.0845 x_{11}^{3}\right.$ $+0.0163 x_{11}^{2}$) (with error of 3.86%)
$y_{13}=10^{3}\left(0.0858 x_{11}^{4}-0.2356 x_{11}^{4}+0.2342 x_{11}^{3}-0.10031 x_{11}^{2}+0.0177 x_{11}-0.0007\right) \quad$ (with error of $\left.10.27 \%\right)$

$$
\begin{equation*}
y_{14}=10^{11}\left(-0.0434 x_{10}^{9}+0.3108 x_{10}^{8}-0.9772 x_{10}^{7}+1.7686 x_{10}^{6}-2.0249 x_{10}^{5}+1.5148 x_{10}^{4}-0.7361 x_{10}^{3}\right. \tag{130}
\end{equation*}
$$

$$
\left.+0.2220 x_{10}^{2}-0.0371 x_{10}+0.0025\right) \quad(\text { with error of } 14.09 \%)
$$

$$
\begin{equation*}
y_{15}=10^{11}\left(-0.0161 x_{10}^{9}+0.1149 x_{10}^{8}-0.3613 x_{10}^{7}+0.6540 x_{10}^{6}-0.7488 x_{10}^{5}+0.5601 x_{10}^{4}-0.2722 x_{10}^{3}\right. \tag{131}
\end{equation*}
$$

$$
\left.+0.0821 x_{10}^{2}-0.0137 x_{10}+0.0009\right) \quad(\text { with error of } 4.53 \%)
$$

$$
\begin{equation*}
y_{16}=10^{17}\left(0.0042 x_{10}^{10}-0.0339 x_{10}^{9}+0.1221 x_{10}^{8}-0.2582 x_{10}^{7}+0.3540 x_{10}^{6}-0.3278 x_{10}^{5}+0.2069 x_{10}^{4}\right. \tag{132}
\end{equation*}
$$

$$
\left.-0.0875 x_{10}^{3}+0.0235 x_{10}^{2}-0.0036 x_{10}+0.0002\right) \quad(\text { with error of } 60.38 \%)
$$

$$
\left.-0.0089 x_{10}+0.0006\right) \quad(\text { with error of } 8.88 \%)
$$

$$
\begin{equation*}
y_{18}=10^{7}\left(0.0071 x_{10}^{7}-0.0395 x_{10}^{6}+0.0917 x_{10}^{5}-0.1151 x_{10}^{4}+0.0839 x_{10}^{3}-0.0350 x_{10}^{2}\right. \tag{134}
\end{equation*}
$$

$$
\left.+0.0076 x_{10}-0.0006\right) \quad(\text { with error of } 11.48 \%)
$$

$$
\begin{equation*}
y_{19}=1.3676 x_{10}^{2}-1.8268 x_{10}+1.0608 \quad(\text { with error of } 22.07 \%) \tag{135}
\end{equation*}
$$

$$
\begin{aligned}
y_{14}= & 10^{11}\left(-0.0140 x_{11}^{10}+0.0984 x_{11}^{9}-0.3058 x_{11}^{8}+0.5500 x_{11}^{7}-0.6307 x_{11}^{6}+0.4781 x_{11}^{5}-0.2399 x_{11}^{4}+0.0773 x_{11}^{3}\right. \\
& \left.\left.-0.0149 x_{11}^{2}+0.0015 x_{11}\right) \quad \text { (with error of } 14.17 \%\right) \\
y_{15}= & 10^{11}\left(0.0108 x_{11}^{10}-0.0757 x_{11}^{9}+0.2335 x_{11}^{8}-0.4170 x_{11}^{7}+0.4747 x_{11}^{6}-0.3571 x_{11}^{5}+0.1779 x_{11}^{4}-0.0569 x_{11}^{3}\right. \\
& \left.\left.+0.0109 x_{11}^{2}-0.0011 x_{11}-0.0001\right) \quad \text { (with error of } 9.54 \%\right)
\end{aligned}
$$

$$
y_{16}=10^{7}\left(-0.0596 x_{11}^{8}+0.3193 x_{11}^{7}-0.7239 x_{11}^{6}+0.8994 x_{11}^{5}-0.6607 x_{11}^{4}+0.2876 x_{11}^{3}-0.0698 x_{11}^{2}\right.
$$

$$
\left.+0.0081 x_{11}^{2}-0.0003\right) \quad(\text { with error of } 5.38 \%)
$$

$$
y_{17}=10^{9}\left(0.0326 x_{11}^{9}-0.2036 x_{11}^{8}+0.5515 x_{11}^{7}-0.8448 x_{11}^{6}+0.7999 x_{11}^{5}-0.4795 x_{11}^{4}+0.1785 x_{11}^{3}-0.0385 x_{11}^{2}\right.
$$

$$
\left.+0.0041 x_{11}^{2}-0.0002\right) \quad(\text { with error of } 8.12 \%)
$$

$$
y_{18}=10^{11}\left(0.0078 x_{11}^{10}-0.0539 x_{11}^{9}+0.1655 x_{11}^{8}-0.2939 x_{11}^{7}+0.3327 x_{11}^{6}-0.2490 x_{11}^{5}+0.1234 x_{11}^{4}-0.0393 x_{11}^{3}\right.
$$

$$
\left.+0.0075 x_{11}^{2}-0.0007 x_{11}\right) \quad(\text { with error of } 6.57 \%)
$$

$$
y_{19}=10^{11}\left(0.0035 x_{11}^{10}-0.0250 x_{11}^{9}+0.0779 x_{11}^{8}-0.1406 x_{11}^{7}+0.1617 x_{11}^{6}-0.1229 x_{11}^{5}+0.0619 x_{11}^{4}-0.0200 x_{11}^{3}\right.
$$

$$
\left.+0.0039 x_{11}^{2}-0.0004 x_{11}\right) \quad(\text { with error of } 0.95 \%)
$$

$$
y_{20}=10^{11}\left(0.0004 x_{11}^{10}-0.0031 x_{11}^{9}+0.0107 x_{11}^{8}-0.0209 x_{11}^{7}+0.0258 x_{11}^{6}-0.0209 x_{11}^{5}+0.0111 x_{11}^{4}-0.0038 x_{11}^{3}\right.
$$

$$
\left.+0.0008 x_{11}^{2}-0.0001 x_{11}\right) \quad(\text { with error of } 5.29 \%)
$$

$$
y_{21}=10^{11}\left(0.0291 x_{11}^{10}-0.2039 x_{11}^{9}+0.6291 x_{11}^{8}-1.1236 x_{11}^{7}+1.2792 x_{11}^{6}-0.9627 x_{11}^{5}+0.4797 x_{11}^{4}\right.
$$

$$
\left.-0.1536 x_{11}^{3}+0.0294 x_{11}^{2}-0.0029 x_{11}+0.0001\right) \quad(\text { with error of } 36.41 \%)
$$

$$
y_{22}=-9.2682 x_{11}^{4}+18.0352 x_{11}^{3}-11.1493 x_{11}^{2}+2.5850 x_{11}-0.1184 \quad(\text { with error of } 21.74 \%)
$$

$$
y_{23}=10^{11}\left(-0.0329 x_{11}^{10}+0.2297 x_{11}^{9}-0.7078 x_{11}^{8}+1.2625 x_{11}^{7}-1.4355 x_{11}^{6}+1.0790 x_{11}^{5}-0.5369 x_{11}^{4}\right.
$$

$$
\left.+0.1717 x_{11}^{3}-0.0328 x_{11}^{2}+0.0032 x_{11}-0.0001\right) \quad(\text { with error of } 21.83 \%)
$$

$$
\begin{equation*}
y_{13}=-10^{6}\left(0.1338 x_{12}^{7}-0.6826 x_{12}^{6}+1.4616 x_{12}^{5}-1.6956 x_{12}^{4}+1.1437 x_{12}^{3}-0.4439 x_{12}^{2}\right. \tag{152}
\end{equation*}
$$

$$
\left.+0.0901 x_{12}-0.0071\right) \quad(\text { with error of } 10.43 \%)
$$

$$
y_{14}=10^{17}\left(0.0377 x_{12}^{10}-0.2963 x_{12}^{9}+1.0389 x_{12}^{8}-2.1348 x_{12}^{7}+2.8419 x_{12}^{6}-2.5549 x_{12}^{5}+1.5658 x_{12}^{4}-0.6430 x_{12}^{3}\right.
$$

$$
\begin{equation*}
\left.+0.1681 x_{12}^{2}-0.0250 x_{12}+0.0016\right) \quad(\text { with error of } 7.41 \%) \tag{153}
\end{equation*}
$$

$$
\begin{equation*}
y_{15}=10^{7}\left(-0.1274 x_{12}^{8}+0.7601 x_{12}^{7}-1.9542 x_{12}^{6}+2.8201 x_{12}^{5}-2.4890 x_{12}^{4}+1.3680 x_{12}^{3}-0.4532 x_{12}^{2}\right. \tag{154}
\end{equation*}
$$

$$
\left.+0.0815 x_{12}-0.0059\right) \quad(\text { with error of } 4.07 \%)
$$

$$
\begin{equation*}
y_{16}=10^{6}\left(0.0158 x_{12}^{7}-0.0796 x_{12}^{6}+0.1680 x_{12}^{5}-0.1920 x_{12}^{4}+0.1275 x_{12}^{3}-0.0487 x_{12}^{2}\right. \tag{155}
\end{equation*}
$$

$$
\left.+0.0097 x_{12}-0.0008\right) \quad(\text { with error of } 11.86 \%)
$$

$$
\begin{equation*}
y_{17}=10^{6}\left(0.0706 x_{12}^{7}-0.3612 x_{12}^{6}+0.7763 x_{12}^{5}-0.9054 x_{12}^{4}+0.6148 x_{12}^{3}-0.2405 x_{12}^{2}\right. \tag{156}
\end{equation*}
$$

$$
\left.+0.0492 x_{12}-0.0039\right) \quad(\text { with error of } 8.88 \%)
$$

$$
\begin{equation*}
y_{18}=-10^{6}\left(0.1172 x_{12}^{7}-0.6081 x_{12}^{6}+1.3247 x_{12}^{5}-1.5640 x_{12}^{4}+1.0738 x_{12}^{3}-0.4241 x_{12}^{2}\right. \tag{157}
\end{equation*}
$$

$$
\left.+0.0875 x_{12}-0.0070\right) \quad(\text { with error of } 11.48 \%)
$$

$$
\begin{equation*}
\left.y_{19}=1.6289 x_{12}^{2}-2.1370 x_{12}+1.1277 \quad \text { (with error of } 22.66 \%\right) \tag{158}
\end{equation*}
$$

$$
\begin{equation*}
y_{20}=57.8441 x_{12}^{4}-158.8260 x_{12}^{3}+151.9245 x_{12}^{2}-57.4083 x_{12}+7.2865 \quad(\text { with error of } 16.66 \%) \tag{159}
\end{equation*}
$$

$$
\begin{equation*}
y_{21}=0.2918 x_{12}-0.0279 \quad(\text { with error of } 25.06 \%) \tag{160}
\end{equation*}
$$

$y_{22}=0.2494 x_{12}+0.0045$ (with error of $\left.23.28 \%\right)$

$$
\begin{align*}
y_{23}= & 10^{10}\left(0.0388 x_{12}^{9}-0.2679 x_{12}^{8}+0.8121 x_{12}^{7}-1.4163 x_{12}^{6}+1.5619 x_{12}^{5}-1.1256 x_{12}^{4}+0.5274 x_{12}^{3}-0.1537 x_{12}^{2}\right. \tag{162}\\
& \left.\left.+0.0250 x_{12}-0.0017\right) \quad \text { (with error of } 12.90 \%\right) \\
y_{14}= & 10^{11}\left(-0.0399 x_{13}^{10}+0.2525 x_{13}^{9}-0.7065 x_{13}^{8}+1.1482 x_{13}^{7}-1.1967 x_{13}^{6}+0.8319 x_{13}^{5}-0.3880 x_{13}^{4}\right. \tag{163}\\
& \left.\left.+0.1188 x_{13}^{3}-0.0225 x_{13}^{2}+0.0023 x_{13}-0.0001\right) \quad \text { (with error of } 3.52 \%\right) \\
y_{15}= & 10^{7}\left(0.0206 x_{13}^{8}-0.0958 x_{13}^{7}+0.1882 x_{13}^{6}-0.2033 x_{13}^{5}+0.1313 x_{13}^{4}-0.0513 x_{13}^{3}+0.0117 x_{13}^{2}-0.0014 x_{13}\right. \tag{164}\\
& +0.0001 \quad \text { (with error of } 3.52 \%) \\
y_{16}= & 10^{10}\left(0.0118 x_{13}^{9}-0.0661 x_{13}^{8}+0.1616 x_{13}^{7}-0.2246 x_{13}^{6}+0.1946 x_{13}^{5}-0.1082 x_{13}^{4}+0.0382 x_{13}^{3}-0.0081 x_{13}^{2}\right. \tag{165}\\
& \left.+0.0009 x_{13}\right) \quad(\text { with error of } 6.66 \%) \\
y_{17}= & 10^{7}\left(0.1171 x_{13}^{8}-0.5649 x_{13}^{7}+1.1575 x_{13}^{6}-1.3096 x_{13}^{5}+0.8880 x_{13}^{4}-0.3652 x_{13}^{3}+0.0872 x_{13}^{2}-0.0107 x_{13}\right. \tag{166}\\
& +0.0005 \quad \text { (with error of } 10.54 \%)
\end{align*}
$$

$$
\begin{align*}
y_{18}= & 10^{11}\left(-0.0053 x_{13}^{10}+0.0310 x_{13}^{9}-0.0802 x_{13}^{8}+0.1195 x_{13}^{7}-0.1132 x_{13}^{6}+0.0710 x_{13}^{5}-0.0296 x_{13}^{4}\right. \\
& \left.\left.+0.0080 x_{13}^{3}-0.0013 x_{13}^{2}+0.0001 x_{13}\right) \quad \text { (with error of } 0.28 \%\right) \tag{167}
\end{align*}
$$

$$
y_{19}=10^{11}\left(0.0068 x_{13}^{10}-0.0447 x_{13}^{9}+0.1294 x_{13}^{8}-0.2175 x_{13}^{7}+0.2342 x_{13}^{6}-0.1679 x_{13}^{5}+0.0806 x_{13}^{4}-0.0254 x_{13}^{3}\right.
$$

$$
\begin{equation*}
\left.+0.0049 x_{13}^{2}-0.0005 x_{13}\right) \quad(\text { with error of } 5.47 \%) \tag{168}
\end{equation*}
$$

$$
\begin{equation*}
y_{20}=10^{11}\left(0.0067 x_{13}^{10}-0.0400 x_{13}^{9}+0.1059 x_{13}^{8}-0.1624 x_{13}^{7}+0.1591 x_{13}^{6}-0.1036 x_{13}^{5}+0.0451 x_{13}^{4}-0.0129 x_{13}^{3}\right. \tag{169}
\end{equation*}
$$

$$
\left.+0.0023 x_{13}^{2}-0.0002 x_{13}\right) \quad(\text { with error of } 12.50 \%)
$$

$$
\begin{equation*}
y_{21}=10^{11}\left(0.1523 x_{13}^{10}-0.9639 x_{13}^{9}+2.6974 x_{13}^{8}-4.3858 x_{13}^{7}+4.5728 x_{13}^{6}-3.1801 x_{13}^{5}+1.4840 x_{13}^{4}-0.4543 x_{13}^{3}\right. \tag{170}
\end{equation*}
$$

$$
\left.+0.0859 x_{13}^{2}-0.0088 x_{13}+0.0003\right) \quad(\text { with error of } 1.79 \%)
$$

$$
\begin{equation*}
y_{22}=10^{11}\left(0.1422 x_{13}^{10}-0.9001 x_{13}^{9}+2.5209 x_{13}^{8}-4.1016 x_{13}^{7}+4.2796 x_{13}^{6}-2.9782 x_{13}^{5}+1.3908 x_{13}^{4}-0.4260 x_{13}^{3}\right. \tag{171}
\end{equation*}
$$

$$
\left.+0.0806 x_{13}^{2}-0.0083 x_{13}+0.0003\right) \quad \text { (with error of } 2.33 \% \text {) }
$$

$$
\begin{align*}
y_{23}= & 10^{11}\left(0.0173 x_{13}^{10}-0.1005 x_{13}^{9}+0.2552 x_{13}^{8}-0.3723 x_{13}^{7}+0.3438 x_{13}^{6}-0.2087 x_{13}^{5}+0.0836 x_{13}^{4}-0.0216 x_{13}^{3}\right. \tag{172}\\
& \left.+0.0034 x_{13}^{2}-0.0003 x_{13}\right) \quad(\text { with error of } 1.61 \%)
\end{align*}
$$

$$
\begin{equation*}
y_{15}=10^{9}\left(0.0225 x_{14}^{9}-0.1343 x_{14}^{8}+0.3468 x_{14}^{7}-0.5074 x_{4}^{6}+0.4605 x_{14}^{5}-0.2666 x_{14}^{4}+0.0972 x_{14}^{3}-0.0211 x_{14}^{2}\right. \tag{173}
\end{equation*}
$$

$$
+0.0024 x_{14}-0.0001 \quad(\text { with error of } 0.65 \%)
$$

$$
\begin{equation*}
y_{16}=10^{15}\left(-0.0012 x_{14}^{10}+0.0084 x_{14}^{9}-0.0255 x_{14}^{8}+0.0445 x_{14}^{7}-0.0496 x_{14}^{6}+0.0368 x_{14}^{5}-0.0182 x_{14}^{4}\right. \tag{174}
\end{equation*}
$$

$$
\left.+0.0058 x_{14}^{3}-0.0011 x_{14}^{2}+0.0001 x_{14}\right) \quad(\text { with error of } 0.17 \%)
$$

$$
\begin{equation*}
y_{17}=10^{9}\left(0.0151 x_{14}^{9}-0.0896 x_{14}^{8}+0.2307 x_{14}^{7}-0.3364 x_{14}^{6}+0.3044 x_{14}^{5}-0.1757 x_{14}^{4}+0.0639 x_{14}^{3}-0.0139 x_{14}^{2}\right. \tag{175}
\end{equation*}
$$

$$
+0.0016 x_{14}-0.0001 \quad \text { (with error of } 11.74 \% \text {) }
$$

$$
\begin{equation*}
y_{18}=10^{9}\left(0.0301 x_{14}^{9}-0.1795 x_{14}^{8}+0.4643 x_{14}^{7}-0.6802 x_{14}^{6}+0.6181 x_{14}^{5}-0.3582 x_{14}^{4}+0.1308 x_{14}^{3}-0.0285 x_{14}^{2}\right. \tag{176}
\end{equation*}
$$

$$
+0.0033 x_{14}-0.0001 \quad(\text { with error of } 9.57 \%)
$$

$$
y_{19}=10^{15}\left(-0.0051 x_{14}^{10}+0.0347 x_{14}^{9}-0.1046 x_{14}^{8}+0.1828 x_{14}^{7}-0.2040 x_{14}^{6}+0.1511 x_{14}^{5}-0.0746 x_{14}^{4}\right.
$$

$$
\begin{equation*}
\left.+0.0240 x_{14}^{3}-0.0047 x_{14}^{2}+0.0005 x_{14}\right) \quad(\text { with error of } 1.81 \%) \tag{177}
\end{equation*}
$$

$$
\begin{equation*}
y_{20}=10^{4}\left(0.0839 x_{14}^{6}-0.3087 x_{14}^{5}+0.4433 x_{14}^{4}-0.3110 x_{14}^{3}+0.1084 x_{14}^{2}-0.0167 x_{14}+0.0009\right) \tag{178}
\end{equation*}
$$

$$
\text { (with error of } 17.06 \% \text {) }
$$

$$
\begin{equation*}
y_{21}=10^{9}\left(0.0037 x_{14}^{9}-0.0233 x_{14}^{8}+0.0631 x_{14}^{7}-0.0965 x_{4}^{6}+0.0915 x_{14}^{5}-0.0553 x_{14}^{4}+0.0210 x_{14}^{3}-0.0047 x_{14}^{2}\right. \tag{179}
\end{equation*}
$$

$$
\left.+0.0006 x_{14} \quad \text { (with error of } 0.41 \%\right)
$$

$$
\begin{equation*}
y_{22}=10^{9}\left(0.0022 x_{14}^{9}-0.0139 x_{14}^{8}+0.0386 x_{14}^{7}-0.0606 x_{4}^{6}+0.0588 x_{14}^{5}-0.0363 x_{14}^{4}+0.0140 x_{14}^{3}-0.0032 x_{14}^{2}\right. \tag{180}
\end{equation*}
$$

$$
\begin{equation*}
+0.0004 x_{14} \quad \text { (with error of } 0.37 \% \text {) } \tag{181}
\end{equation*}
$$

$y_{23}=-1.5105 x_{14}^{2}+1.9019 x_{14}-0.0867 \quad$ (with error of 31.41%)
$y_{16}=10^{10}\left(0.0550 x_{15}^{10}-0.3271 x_{15}^{9}+0.8642 x_{15}^{8}-1.3364 x_{15}^{7}+1.3401 x_{15}^{6}-0.9110 x_{15}^{5}+0.4253 x_{15}^{4}\right.$
$-0.1347 x_{15}^{3}+0.0277 x_{15}^{2}-0.0033 x_{15}+0.0002$) (with error of 1.58%)
$y_{17}=10^{3}\left(0.5847 x_{15}^{5}-1.9282 x_{15}^{4}+2.4383 x_{15}^{3}-1.4744 x_{15}^{2}\right.$
$+0.4273 x_{15}-0.0470 \quad$ (with error of 9.82%)
$y_{18}=10^{9}\left(0.0035 x_{15}^{9}-0.0153 x_{15}^{8}+0.0270 x_{15}^{7}-0.0238 x_{15}^{6}+0.0088 x_{15}^{5}+0.0018 x_{15}^{4}-0.0033 x_{15}^{3}\right.$
$\left.+0.0014 x_{15}^{2}-0.0003 x_{15}\right) \quad($ with error of $5.94 \%)$
$y_{19}=10^{10}\left(0.1522 x_{15}^{10}-0.8872 x_{15}^{9}+2.2963 x_{15}^{8}-3.4771 x_{15}^{7}+3.4136 x_{15}^{6}-2.2720 x_{15}^{5}+1.0389 x_{15}^{4}\right.$
$-0.3225 x_{15}^{3}+0.0650 x_{15}^{2}-0.0077 x_{15}+0.0004$) (with error of 5.07\%)
$y_{20}=10^{10}\left(-0.2555 x_{15}^{10}+1.4817 x_{15}^{9}-3.8128 x_{15}^{8}+5.7373 x_{15}^{7}-5.5953 x_{15}^{6}+3.6981 x_{15}^{5}-1.6786 x_{15}^{4}+0.5170 x_{15}^{3}\right.$
$-0.1035 x_{15}^{2}+0.0122 x_{15}-0.0006$) (with error of 2.09%)
$y_{21}=10^{10}\left(-0.2567 x_{15}^{10}+1.5127 x_{15}^{9}-3.9596 x_{15}^{8}+6.0669 x_{15}^{7}-6.0293 x_{15}^{6}+4.0635 x_{15}^{5}-1.8818 x_{15}^{4}+0.5916 x_{15}^{3}\right.$
$-0.1209 x_{15}^{2}+0.0145 x_{15}-0.0008$) (with error of 0.01%)
$y_{22}=10^{10}\left(-0.2953 x_{15}^{10}+1.7384 x_{15}^{9}-4.5462 x_{15}^{8}+6.9585 x_{15}^{7}-6.9079 x_{15}^{6}+4.6502 x_{15}^{5}-2.1508 x_{15}^{4}+0.6753 x_{15}^{3}\right.$
$-0.1378 x_{15}^{2}+0.0165 x_{15}-0.0009$) (with error of 0.21%)
$y_{23}=10^{10}\left(0.1010 x_{15}^{10}-0.5867 x_{15}^{9}+1.5109 x_{15}^{8}-2.2730 x_{15}^{7}+2.2133 x_{15}^{6}-1.4584 x_{15}^{5}+0.6589 x_{15}^{4}-0.2016 x_{15}^{3}\right.$
$+0.0400 x_{15}^{2}-0.0046 x_{15}+0.0002$) (with error of 0.36%)

$$
\begin{aligned}
y_{17}= & 10^{8}\left(-0.1401 x_{16}^{7}+0.5233 x_{16}^{7}-0.8181 x_{16}^{6}+0.7014 x_{16}^{5}-0.3619 x_{16}^{4}+0.1154 x_{16}^{3}-0.0223 x_{16}^{2}\right. \\
& \left.\left.+0.0024 x_{16}-0.0001\right) \quad \text { (with error of } 3.32 \%\right) \\
y_{18}= & 10^{13}\left(0.1995 x_{16}^{10}-0.8723 x_{16}^{9}+1.6601 x_{16}^{8}-1.8169 x_{16}^{7}+1.2704 x_{16}^{6}-0.5944 x_{16}^{5}+0.1889 x_{16}^{4}-0.0403 x_{16}^{3}\right.
\end{aligned}
$$

$$
\left.+0.0055 x_{16}^{2}-0.0004 x_{16}\right) \quad(\text { with error of } 2.34 \%)
$$

$$
y_{19}=10^{10}\left(-0.5164 x_{16}^{9}+2.0842 x_{16}^{8}-3.5957 x_{16}^{7}+3.4926 x_{16}^{6}-2.1124 x_{16}^{5}+0.8275 x_{16}^{4}-0.2104 x_{16}^{3}+0.0336 x_{16}^{2}\right.
$$

$$
\left.-0.0030 x_{16}+0.0001\right) \quad \text { (with error of } 12.92 \% \text {) }
$$

$$
y_{20}=10^{13}\left(0.1205 x_{16}^{10}-0.5262 x_{16}^{9}+1.0003 x_{16}^{8}-1.0934 x_{16}^{7}+0.7634 x_{16}^{6}-0.3567 x_{16}^{5}+0.1132 x_{16}^{4}-0.0241 x_{16}^{3}\right.
$$

$$
\left.+0.0033 x_{16}^{2}-0.0003 x_{16}\right) \quad(\text { with error of } 3.53 \%)
$$

$$
y_{21}=-10^{6}\left(0.1387 x_{16}^{7}-0.4505 x_{16}^{6}+0.5903 x_{16}^{5}-0.4065 x_{16}^{4}+0.1603 x_{16}^{3}-0.0366 x_{16}^{2}\right.
$$

$$
\left.+0.0045 x_{16}-0.0002\right) \quad(\text { with error of } 14.65 \%)
$$

$$
y_{22}=-10^{6}\left(0.1036 x_{16}^{7}-0.3376 x_{16}^{6}+0.4442 x_{16}^{5}-0.3078 x_{16}^{4}+0.1225 x_{16}^{3}-0.0283 x_{16}^{2}\right.
$$

$$
\left.+0.0035 x_{16}-0.0002\right) \quad(\text { with error of } 12.53 \%)
$$

$$
y_{23}=10^{13}\left(-0.3142 x_{16}^{10}+1.3749 x_{16}^{9}-2.6186 x_{16}^{8}+2.8682 x_{16}^{7}-2.0071 x_{16}^{6}+0.9400 x_{16}^{5}\right.
$$

$$
\left.-0.2990 x_{16}^{4}+0.0639 x_{16}^{3}-0.0088 x_{16}^{2}+0.0007 x_{16}\right) \quad(\text { with error of } 20.76 \%)
$$

$$
y_{18}=10^{11}\left(0.0104 x_{17}^{10}-0.0770 x_{17}^{9}+0.2542 x_{17}^{8}-0.4948 x_{17}^{7}+0.6290 x_{17}^{6}-0.5456 x_{17}^{5}+0.3270 x_{17}^{4}\right.
$$

$$
\left.-0.1338 x_{17}^{3}+0.0357 x_{17}^{2}-0.0056 x_{17}+0.0004\right) \quad(\text { with error of } 5.25 \%)
$$

$$
\begin{align*}
y_{19}= & 10^{11}\left(0.1410 x_{17}^{10}-1.0658 x_{17}^{9}+3.6105 x_{17}^{8}-7.2204 x_{17}^{7}+9.4403 x_{17}^{6}-8.4318 x_{17}^{5}+5.2103 x_{17}^{4}\right. \tag{198}\\
& \left.\left.-2.1996 x_{17}^{3}+0.6071 x_{17}^{2}-0.0989 x_{17}+0.0072\right) \quad \text { (with error of } 10.31 \%\right) \\
y_{20}= & 10^{5}\left(0.0704 x_{17}^{6}-0.3188 x_{17}^{5}+0.5916 x_{17}^{4}-0.5754 x_{17}^{3}+0.3087 x_{17}^{2}-0.0865 x_{17}\right. \tag{199}\\
& +0.0099 \quad \text { (with error of } 15.13 \%) \\
y_{21}= & 10^{11}\left(-0.0213 x_{17}^{10}+0.1640 x_{17}^{9}-0.5670 x_{17}^{8}+1.1578 x_{17}^{7}-1.5465 x_{17}^{6}+1.4120 x_{17}^{5}-0.8924 x_{17}^{4}+0.3855 x_{17}^{3}\right. \tag{200}\\
& \left.\left.-0.1090 x_{17}^{2}+0.0182 x_{17}-0.0014\right) \quad \text { (with error of } 0.33 \%\right) \\
y_{22}= & 10^{11}\left(-0.0226 x_{17}^{10}+0.1741 x_{17}^{9}-0.6020 x_{17}^{8}+1.2295 x_{17}^{7}-1.6428 x_{17}^{6}+1.5004 x_{17}^{5}-0.9487 x_{17}^{4}+0.4100 x_{17}^{3}\right. \tag{201}\\
& \left.-0.1159 x_{17}^{2}+0.0194 x_{17}-0.0015\right) \quad(\text { with error of } 0.25 \%) \\
y_{23}= & 10^{11}\left(-0.0825 x_{17}^{10}+0.6196 x_{17}^{9}-2.0869 x_{17}^{8}+4.1488 x_{17}^{7}-5.3916 x_{17}^{6}+4.7862 x_{17}^{5}-2.9392 x_{17}^{4}\right. \tag{202}\\
& \left.+1.2330 x_{17}^{3}-0.3382 x_{17}^{2}+0.0548 x_{17}-0.0040\right) \quad(\text { with error of } 1.66 \%) \\
y_{19}= & 10^{12}\left(-0.0116 x_{18}^{10}+0.0828 x_{18}^{9}-0.2637 x_{18}^{8}+0.4957 x_{18}^{7}-0.6086 x_{18}^{6}+0.5101 x_{18}^{5}-0.2956 x_{18}^{4}\right. \tag{203}\\
& \left.+0.1169 x_{18}^{3}-0.0302 x_{18}^{2}+0.0046 x_{18}-0.0003\right) \quad(\text { with error of } 7.92 \%) \\
y_{20}= & 10^{12}\left(-0.0242 x_{18}^{10}+0.1694 x_{18}^{9}-0.5313 x_{18}^{8}+0.9829 x_{18}^{7}-1.1881 x_{18}^{6}+0.9805 x_{18}^{5}-0.5594 x_{18}^{4}\right. \tag{204}\\
& \left.+0.2179 x_{18}^{3} 183-0.0555 x_{18}^{2}+0.0083 x_{18}-0.0006\right) \quad(\text { with error of } 7.60 \%) \tag{206}\\
y_{21}= & 10^{12}\left(0.1750 x_{18}^{10}-1.2310 x_{18}^{9}+3.8788 x_{18}^{8}-7.2105 x_{18}^{7}+8.7578 x_{18}^{6}-7.2621 x_{18}^{5}+4.1635 x_{18}^{4}-1.6296 x_{18}^{3}\right. \tag{207}\\
& \left.+0.4167 x_{18}^{2}-0.0629 x_{18}+0.0042\right) \quad(\text { with error of } 25.32 \%) \\
y_{22}= & \left.-0.3013 x_{18}^{2}-0.2155 x_{18}+0.4963 \quad \text { (with error of } 22.50 \%\right) \\
y_{23}= & 10^{12}\left(0.0337 x_{18}^{10}-0.2372 x_{18}^{9}+0.7491 x_{18}^{8}-1.3957 x_{18}^{7}+1.6990 x_{18}^{6}-1.4119 x_{18}^{5}+0.8113 x_{18}^{4}-0.3182 x_{18}^{3}\right. \\
& \left.+0.0815 x_{18}^{2}-0.0123 x_{18}+0.0008\right) \quad(\text { with error of } 7.44 \%)
\end{align*}
$$

$$
\begin{align*}
y_{23}= & 10^{12}\left(0.0844 x_{19}^{10}-0.4936 x_{19}^{9}+1.2853 x_{19}^{8}-1.9624 x_{19}^{7}+1.9462 x_{19}^{6}-1.3106 x_{19}^{5}+0.6070 x_{19}^{4}\right. \\
& \left.-0.1910 x_{19}^{3}+0.0391 x_{19}^{2}-0.0047 x_{19}+0.0003\right) \quad(\text { with error of } 12.52 \%) \tag{211}
\end{align*}
$$

$$
\begin{equation*}
y_{20}=10^{12}\left(-0.0093 x_{19}^{10}+0.0544 x_{19}^{9}-0.1412 x_{19}^{8}+0.2151 x_{19}^{7}-0.2127 x_{19}^{6}+0.1429 x_{19}^{5}-0.0660 x_{19}^{4}\right. \tag{208}
\end{equation*}
$$

$$
\left.+0.0207 x_{19}^{3}-0.0042 x_{19}^{2}+0.0005 x_{19}\right) \quad(\text { with error of } 3.95 \%)
$$

$$
\begin{equation*}
y_{21}=10^{12}\left(-0.0291 x_{19}^{10}+0.1661 x_{19}^{9}-0.4217 x_{19}^{8}+0.6271 x_{19}^{7}-0.6053 x_{19}^{6}+0.3965 x_{19}^{5}-0.1785 x_{19}^{4}\right. \tag{209}
\end{equation*}
$$

$$
\left.+0.0546 x_{19}^{3}-0.0109 x_{19}^{2}+0.0013 x_{19}-0.0001\right) \quad(\text { with error of } 18.68 \%)
$$

$$
y_{22}=10^{12}\left(-0.0286 x_{19}^{10}+0.1630 x_{19}^{9}-0.4134 x_{19}^{8}+0.6142 x_{19}^{7}-0.5921 x_{19}^{6}+0.3874 x_{19}^{5}-0.1742 x_{19}^{4}\right.
$$

$$
\begin{equation*}
\left.+0.0532 x_{19}^{3}-0.0106 x_{19}^{2}+0.0012 x_{19}-0.0001\right) \quad(\text { with error of } 14.59 \%) \tag{210}
\end{equation*}
$$

$$
\begin{equation*}
y_{21}=10^{15}\left(0.0003 x_{20}^{10}-0.0023 x_{20}^{9}+0.0084 x_{20}^{8}-0.0182 x_{20}^{7}+0.0257 x_{20}^{6}-0.0248 x_{20}^{5}+0.0166 x_{20}^{4}-0.0076 x_{20}^{3}\right. \tag{212}
\end{equation*}
$$

$$
\left.+0.0023 x_{20}^{2}-0.0004 x_{20}\right) \quad(\text { with error of } 17.86 \%)
$$

$$
y_{22}=10^{10}\left(-0.1044 x_{20}^{9}+0.7624 x_{20}^{8}-2.4655 x_{20}^{7}+4.6340 x_{20}^{6}-5.5778 x_{20}^{5}+4.4585 x_{20}^{4}-2.3664 x_{20}^{3}\right.
$$

$$
\begin{equation*}
+0.8042 x_{20}^{2}-0.1587 \times 20+0.0139 \quad \text { (with error of } 14.46 \% \text {) } \tag{213}
\end{equation*}
$$

$$
\begin{equation*}
y_{23}=10^{3}\left(0.2688 x_{20}^{4}-0.8261 x_{20}^{3}+0.9385 x_{20}^{2}-0.4660 x_{20}+0.0854 \quad(\text { with error of } 23.79 \%)\right. \tag{214}
\end{equation*}
$$

$$
\begin{equation*}
y_{22}=10^{13}\left(0.0771 x_{21}^{10}-0.1756 x_{21}^{9}+0.1420 x_{21}^{8}-0.0517 x_{21}^{7}+0.0090 x_{21}^{6}-0.0008 x_{21}^{5}\right) \quad(\text { with error of } 0.28 \%) \tag{215}
\end{equation*}
$$

$$
y_{23}=10^{13}\left(0.5020 x_{21}^{10}-1.1458 x_{21}^{9}+0.9312 x_{21}^{8}-0.3424 x_{21}^{7}+0.0602 x_{21}^{6}-0.0055 x_{21}^{5}\right.
$$

$$
\begin{equation*}
\left.+0.0003 x_{21}^{4}\right) \quad(\text { with error of } 0.11 \%) \tag{216}
\end{equation*}
$$

$$
\begin{align*}
y_{23}= & 10^{11}\left(3.2579 x_{22}^{10}-7.3439 x_{22}^{9}+5.9843 x_{22}^{8}-2.3215 x_{22}^{7}\right. \\
& \left.+0.4750 x_{22}^{6}-0.0556 x_{22}^{5}+0.0039 x_{22}^{4}-0.0002 x_{22}^{3}\right) \quad(\text { with error of } 0.01 \%) \tag{217}
\end{align*}
$$

where x_{i} is the measured results of test i; and y_{i} the estimated results of test i, with $3 \leq i \leq 23$. Details of test i can be seen in Table 1 .

Appendix B. Summary of fitting errors (\%) of 1st- to 10th-order polynomials

Equation	Order 1	Order 2	Order 3	Order 4	Order 5	Order 6	Order 7	Order 8	Order 9	Order 10
(8)	3.65	3.42	3.16	2.88	2.68	2.08	1.21	1.30	0.88	12.81
(9)	0.42	0.41	0.41	0.14	0.13	0.12	0.13	0.12	0.18	1.53
(10)	2.37	2.25	2.07	2.00	1.85	1.38	0.74	0.60	2.38	3.21
(11)	1.05	1.01	1.03	0.88	0.94	0.94	0.94	0.93	0.42	2.74
(12)	34.66	32.66	31.93	30.96	30.08	24.26	8.49	5.12	4.23	2.18
(13)	17.37	17.62	17.47	15.77	12.15	8.52	8.25	2.61	11.10	2.13
(14)	17.81	19.78	17.73	20.11	19.38	18.85	12.56	11.87	-5.22	15.43
(15)	8.80	9.61	8.20	7.77	9.43	9.69	10.28	10.17	24.61	124.90
(16)	18.83	20.89	24.02	22.54	20.47	21.10	25.34	26.51	19.68	120.29
(17)	21.63	18.79	18.09	18.56	13.77	11.57	11.67	2.40	8.14	72.83
(18)	28.47	22.46	24.74	24.50	28.24	24.19	23.99	23.71	134.75	37.84
(19)	18.36	14.30	12.50	14.82	13.08	15.08	14.78	3.93	26.89	69.85
(20)	13.75	12.55	11.45	10.30	10.35	7.41	5.03	4.39	8.87	11.67
(21)	16.66	16.68	15.94	16.42	17.12	14.41	11.74	12.68	56.94	497.93
(22)	18.59	18.82	16.00	13.55	12.05	11.85	12.95	15.64	80.36	3.80
(23)	23.01	19.57	21.74	24.80	21.72	19.07	7.48	7.91	4.28	5.86
(24)	21.50	22.59	19.86	20.61	22.72	22.31	14.72	14.31	2.92	33.33
(25)	27.95	37.80	39.93	40.38	40.53	31.74	22.09	21.75	72.99	386.17
(26)	26.86	36.96	40.90	40.79	39.49	29.72	19.72	19.25	13.52	184.38
(27)	30.27	27.10	29.23	35.38	35.23	34.79	40.38	21.93	37.59	402.62
(28)	1.19	1.13	1.20	1.08	1.17	1.03	1.01	0.75	0.98	3.26
(29)	0.71	0.71	0.69	0.72	0.57	0.45	0.43	0.46	0.42	0.34
(30)	1.22	1.22	1.21	1.06	0.91	0.90	0.91	0.87	1.50	1.67
(31)	32.48	29.52	29.23	28.86	21.27	13.61	13.50	5.07	39.53	1.21
(32)	15.89	16.28	16.84	16.78	12.85	12.70	11.02	9.90	9.95	11.47
(33)	28.26	22.16	20.41	19.07	16.01	14.42	11.69	10.86	22.16	12.32
(34)	13.55	12.11	11.60	11.72	8.69	3.57	3.64	4.68	4.61	5.37
(35)	26.13	21.68	24.13	24.90	21.96	17.14	16.52	9.28	11.88	23.83
(36)	19.29	15.51	15.84	16.15	13.64	15.71	8.44	8.67	20.02	12.12
(37)	26.52	21.54	22.04	19.26	22.52	15.80	15.65	7.02	3.88	8.31
(38)	16.76	11.48	11.45	12.46	14.23	15.33	13.04	12.98	28.99	21.08
(39)	13.54	13.51	11.05	9.81	9.13	9.10	8.46	8.38	9.34	6.11
(40)	15.19	17.40	16.42	18.41	17.08	18.75	12.18	11.96	40.87	12.57
(41)	19.91	18.07	13.68	14.53	14.33	15.81	13.67	14.05	34.08	21.50
(42)	23.66	23.21	14.16	12.71	18.59	11.04	10.53	6.99	3.87	8.84
(43)	22.00	21.97	18.56	20.53	21.18	18.99	12.21	12.16	11.26	15.45
(44)	25.63	29.27	30.89	37.88	43.92	38.81	37.19	15.56	15.86	100.53
(45)	24.57	28.76	31.66	37.57	41.98	38.93	37.10	16.09	77.13	41.39
(46)	28.61	29.48	29.54	31.00	33.80	25.29	31.92	31.90	52.87	31.24
(47)	2.50	2.31	2.04	1.93	1.70	0.89	0.73	0.86	-0.08	15.25
(48)	0.94	0.99	1.03	0.73	0.81	0.67	0.67	0.48	0.31	146.88
(49)	34.70	32.49	31.38	30.91	29.10	17.24	8.41	8.86	-1.38	745.69
(50)	19.30	19.46	19.52	17.67	12.00	10.24	2.69	4.10	6.92	2184.94
(51)	19.67	22.20	18.23	20.70	19.74	18.66	11.84	23.92	5.91	3199.85
(52)	10.50	11.88	10.03	8.09	9.02	9.50	9.48	9.31	8.39	5830.37
(53)	19.98	23.91	25.93	21.85	20.65	20.92	25.29	26.62	13.20	8805.33
(54)	20.35	17.81	17.03	17.31	13.16	8.07	7.50	24.02	20.65	1203.30
(55)	27.06	22.59	25.45	25.55	28.23	26.06	25.14	27.08	37.36	85.14
(56)	18.95	14.07	11.55	14.63	12.11	13.92	8.65	28.50	24.01	75.57
(57)	12.74	12.71	13.02	12.49	12.20	11.54	6.34	19.75	16.96	296.14
(58)	16.66	16.19	17.90	17.48	19.78	16.95	12.59	38.78	23.35	16.92
(59)	18.08	18.35	16.88	14.77	12.11	12.81	12.78	19.33	31.15	860.46
(60)	23.37	20.01	22.42	24.85	20.29	13.76	8.38	8.03	2.65	4587.50
(61)	21.17	22.30	19.14	19.61	21.95	22.97	21.40	20.78	19.77	282.29
(62)	27.47	33.91	33.52	28.34	27.72	34.81	29.97	12.57	18.79	3538.93
(63)	26.42	33.12	34.81	29.48	27.73	34.81	30.14	12.18	23.48	14.91

Appendix B (Continued)

Equation	Order 1	Order 2	Order 3	Order 4	Order 5	Order 6	Order 7	Order 8	Order 9	Order 10
(64)	30.58	26.70	29.61	37.07	35.66	34.71	36.35	13.13	26.84	2970.16
(65)	1.13	1.12	1.12	0.77	0.83	0.91	0.73	1.58	1.11	10303.00
(66)	32.54	29.88	29.50	29.45	23.75	11.03	2.99	1.45	1.72	2898.50
(67)	15.51	15.86	16.60	16.55	11.97	12.87	8.53	12.89	16.49	6191.19
(68)	27.64	21.55	19.73	19.28	16.36	13.94	6.84	11.35	12.59	227181.10
(69)	12.92	10.95	10.42	10.34	9.74	11.74	9.97	10.61	6.29	131291.99
(70)	25.27	23.74	26.49	21.72	22.26	23.46	16.97	26.92	18.97	467111.48
(71)	19.58	15.19	15.13	14.53	16.64	17.33	18.80	21.53	21.20	28269.94
(72)	27.13	22.53	21.49	18.11	13.02	15.04	14.13	13.76	15.39	210389.44
(73)	19.03	12.35	12.69	13.05	13.27	14.44	10.54	15.78	21.76	103963.07
(74)	13.18	13.61	13.21	8.60	8.15	6.08	6.77	5.52	6.77	108765.85
(75)	15.67	16.11	14.92	19.70	21.70	22.86	24.29	13.39	12.22	220733.08
(76)	19.99	17.95	12.94	14.22	12.98	13.27	12.78	24.50	26.85	230322.96
(77)	24.21	24.07	13.51	14.63	15.63	7.01	7.09	8.53	8.06	121682.13
(78)	21.90	22.01	18.27	20.12	20.99	15.88	14.45	8.43	3.32	364700.00
(79)	25.78	31.45	33.97	39.09	49.65	48.70	49.16	50.06	47.69	1926352.97
(80)	24.75	30.83	34.57	39.13	48.54	48.61	49.04	49.14	52.74	991998.45
(81)	28.44	29.33	29.85	32.40	37.75	31.61	40.31	2.07	3.36	1145545.16
(82)	34.62	31.69	30.29	28.25	24.12	22.58	22.05	6.59	3139.70	362.87
(83)	34.21	31.08	32.72	31.89	30.98	29.78	32.51	13.61	-96.31	166391.19
(84)	46.70	49.89	54.59	54.64	53.35	45.14	45.76	69.58	4533.07	3875.59
(85)	38.64	43.16	45.76	46.22	45.23	38.63	35.06	16.46	642.87	55908.64
(86)	47.22	51.01	54.76	55.08	53.56	47.80	45.71	23.03	9780.33	342463.11
(87)	34.01	28.03	31.69	30.37	29.56	21.35	26.29	34.59	78.30	323137.42
(88)	34.66	38.04	41.84	43.54	42.99	32.28	36.67	30.28	1639.44	32731.69
(89)	24.04	29.57	28.74	22.70	19.24	15.73	20.49	20.17	1363.07	46736.96
(90)	23.58	25.12	26.29	22.68	22.87	29.53	29.66	53.87	290.85	79980.69
(91)	18.45	14.08	10.58	9.58	10.06	11.35	11.76	50.64	2571.95	217500.00
(92)	18.05	18.87	19.97	22.20	19.01	15.13	16.16	25.44	829.32	358335.10
(93)	28.93	19.12	14.77	13.48	8.79	7.90	7.37	7.79	5167.60	195232.40
(94)	15.95	17.72	21.24	18.78	19.08	15.86	13.02	4.47	1316.67	134316.67
(95)	29.81	27.74	34.72	31.57	36.73	29.91	61.15	161.27	6388.93	9000.00
(96)	28.20	26.65	33.53	30.66	34.43	27.19	58.88	144.52	3397.89	4647.89
(97)	35.12	31.05	30.50	23.28	23.47	24.67	1.25	3.28	1495.16	1990.32
(98)	60.33	38.77	34.28	30.93	29.32	20.94	15.16	40.42	-75.89	43.08
(99)	58.63	41.36	37.34	32.75	29.90	11.82	8.74	27.39	588.47	301.30
(100)	64.31	44.10	38.65	34.11	17.38	9.74	9.88	17.97	-67.60	5546.14
(101)	56.54	44.36	38.90	34.07	30.21	10.90	3.68	13.72	41.57	600.64
(102)	55.08	37.82	34.23	33.13	24.04	15.42	20.05	52.10	-86.29	88.04
(103)	59.86	37.00	34.69	33.43	19.47	24.90	24.23	27.34	-185.21	8833.10
(104)	19.65	28.43	35.45	25.42	6.46	6.40	7.45	20.10	-28.34	2770.00
(105)	23.45	28.47	36.79	28.39	12.20	14.54	12.22	11.99	401.58	852.90
(106)	18.40	18.17	15.76	17.26	20.62	20.65	9.55	5.99	552.83	1896.94
(107)	21.80	19.25	17.94	17.19	13.51	16.82	18.38	53.70	-57.31	8791.71
(108)	14.88	18.46	20.77	20.23	22.96	23.05	22.58	19.27	24.40	4149.67
(109)	23.20	18.57	22.20	20.84	20.75	19.91	19.69	20.11	-42.19	2300.00
(110)	18.90	31.07	31.57	33.18	33.14	28.99	13.22	13.34	2355.02	2561.07
(111)	18.12	28.74	29.36	32.36	33.95	29.28	11.37	9.47	1515.98	2335.09
(112)	25.61	28.85	27.95	26.67	30.75	41.24	41.25	10.24	1633.06	2629.84
(113)	19.16	20.96	18.15	20.01	11.92	7.75	8.59	9.95	8.61	1.87
(114)	12.45	12.80	10.84	9.45	7.76	6.36	5.05	5.23	5.38	7.18
(115)	19.98	22.09	24.74	23.02	17.98	20.94	18.92	19.39	20.15	2.42
(116)	27.09	21.03	18.38	16.18	11.44	6.63	5.30	3.01	0.64	0.23
(117)	33.04	25.63	29.93	29.57	28.39	24.88	25.29	24.99	25.38	15.84
(118)	20.98	12.49	12.17	8.19	6.95	6.68	6.16	6.77	6.64	2.44
(119)	16.08	13.61	18.11	8.44	8.19	8.12	8.10	9.05	8.08	7.44
(120)	14.71	14.49	13.16	17.96	19.04	19.47	18.68	18.15	16.97	6.34
(121)	22.68	18.31	18.52	11.21	10.69	13.41	12.50	9.36	8.87	8.15
(122)	23.34	18.91	19.92	22.48	13.45	7.57	7.23	7.69	4.21	5.27
(123)	21.90	23.07	20.54	22.06	23.57	20.17	19.29	17.64	16.73	18.53
(124)	31.49	43.86	46.83	47.77	34.20	30.22	27.76	28.86	30.43	24.94
(125)	30.05	42.43	46.72	47.65	34.85	27.81	24.62	25.49	26.91	20.73
(126)	27.11	31.50	30.29	43.02	34.53	31.04	26.32	31.73	33.01	32.58
(127)	18.04	14.23	14.96	17.10	15.01	15.89	15.85	6.76	6.76	9.89

Appendix B (Continued)

Equation	Order 1	Order 2	Order 3	Order 4	Order 5	Order 6	Order 7	Order 8	Order 9	Order 10
(128)	14.29	13.14	13.88	11.49	11.11	11.96	10.90	9.22	0.82	27.32
(129)	15.96	15.60	16.36	16.64	17.80	16.26	16.32	15.34	10.43	279.56
(130)	32.20	15.55	18.70	19.33	18.29	18.32	15.92	19.16	14.09	2920.53
(131)	25.74	7.71	10.19	9.00	8.98	6.86	5.42	6.41	4.53	1194.78
(132)	73.47	73.84	74.11	76.27	75.46	74.79	73.84	76.80	79.87	60.38
(133)	15.18	15.07	16.12	15.52	16.95	17.91	14.67	9.19	8.88	1191.67
(134)	22.36	16.45	16.69	11.48	11.48	11.48	11.48	11.48	11.48	142.52
(135)	26.88	22.07	22.83	22.81	22.81	22.81	22.81	22.81	22.81	41.34
(136)	21.75	20.62	18.32	17.38	16.67	16.67	16.67	16.67	16.67	432.81
(137)	23.19	23.44	22.89	23.96	23.89	34.17	30.42	41.68	49.03	1863.93
(138)	22.12	22.36	21.78	20.29	21.84	31.68	30.73	41.47	48.94	2127.33
(139)	24.48	25.21	30.20	20.17	22.97	10.55	8.58	10.57	12.90	459.12
(140)	16.12	16.66	18.11	18.11	18.67	19.33	17.21	13.28	12.07	3.86
(141)	16.38	16.25	15.87	12.26	10.27	11.82	11.84	10.49	10.32	11.77
(142)	22.75	21.40	21.46	20.82	20.81	19.49	20.90	17.46	19.83	14.17
(143)	16.26	11.84	10.86	11.04	10.47	10.86	11.83	12.38	11.30	9.54
(144)	13.13	13.98	9.19	11.01	6.81	6.09	6.10	5.38	5.46	6.25
(145)	14.44	15.77	14.71	14.64	16.82	8.59	11.13	11.61	8.12	8.25
(146)	19.04	18.74	15.14	15.11	15.77	15.26	12.03	11.90	7.99	6.57
(147)	21.92	20.48	22.15	21.59	10.59	7.17	7.04	4.99	2.81	0.95
(148)	22.93	21.65	20.80	22.12	14.82	15.12	12.71	8.08	5.33	5.29
(149)	24.40	25.13	25.07	22.24	29.79	40.48	34.37	37.31	39.59	36.41
(150)	23.32	22.15	22.11	21.74	26.90	39.26	34.47	36.67	39.49	36.46
(151)	27.84	36.34	36.26	30.97	40.13	36.17	37.23	36.31	35.10	21.83
(152)	18.52	14.56	15.35	17.17	13.24	12.76	10.43	10.43	10.43	10.52
(153)	29.01	20.41	19.99	18.97	17.98	17.76	16.71	14.94	14.08	7.41
(154)	24.89	11.82	10.08	13.08	6.92	6.93	6.63	4.07	4.09	4.23
(155)	17.02	12.36	11.92	11.85	11.86	11.86	11.86	11.86	11.86	11.99
(156)	11.86	15.12	10.51	12.76	11.95	11.95	8.88	8.88	8.88	38.18
(157)	22.27	17.69	19.14	17.59	15.20	11.48	11.48	11.48	11.48	11.55
(158)	26.01	22.66	22.88	22.81	22.82	22.81	22.81	22.81	22.81	22.73
(159)	21.69	17.86	17.06	16.66	16.85	16.67	16.67	16.67	16.67	16.74
(160)	25.06	26.33	40.89	40.26	45.49	44.71	46.30	47.36	49.33	1123.31
(161)	23.28	25.07	38.81	39.14	44.75	44.24	46.23	47.31	48.95	1125.07
(162)	24.23	33.16	24.98	27.50	27.89	28.35	23.46	21.85	12.90	241.10
(163)	25.83	26.82	29.46	28.29	26.41	25.81	17.44	12.52	10.51	3.52
(164)	20.61	12.78	12.80	7.22	6.69	6.64	3.98	3.32	4.08	4.24
(165)	24.30	19.46	21.03	11.39	11.19	10.16	9.58	9.57	6.66	8.55
(166)	16.33	15.53	16.23	18.43	18.03	19.47	12.95	10.54	10.60	12.23
(167)	22.53	17.76	19.80	15.08	14.60	14.88	13.76	6.96	1.39	0.28
(168)	24.65	21.04	20.79	23.32	19.05	7.19	6.15	7.50	6.75	5.47
(169)	22.71	23.10	19.22	19.92	21.86	18.76	18.56	18.79	13.75	12.50
(170)	22.93	26.89	25.20	30.23	25.62	33.51	35.05	43.08	34.75	1.79
(171)	20.96	25.27	24.33	29.12	24.54	33.48	35.09	42.47	32.43	2.33
(172)	26.91	30.77	30.32	36.67	28.63	26.07	26.42	29.81	4.88	1.61
(173)	17.28	10.48	16.92	15.71	15.63	16.13	10.00	10.61	0.65	17.29
(174)	26.53	17.59	17.02	10.89	11.02	7.50	7.07	5.06	3.43	0.17
(175)	25.38	19.03	27.44	21.79	22.16	19.97	12.44	11.78	11.74	456.70
(176)	20.30	18.50	15.01	20.72	20.82	17.23	14.75	14.17	9.57	173.38
(177)	23.55	21.76	25.94	21.81	19.57	12.11	12.49	9.36	9.38	1.81
(178)	22.55	21.23	20.20	20.21	22.82	17.06	17.21	17.59	17.59	36.24
(179)	80.99	35.73	64.04	52.73	51.03	50.59	35.25	1.76	0.41	8.31
(180)	80.81	32.97	64.81	55.04	48.81	50.09	34.18	1.02	0.37	0.94
(181)	59.32	31.41	58.80	59.75	59.77	43.57	38.18	42.60	0.00	0.00
(182)	12.40	16.20	6.56	10.69	10.60	11.66	9.78	9.67	2.64	1.58
(183)	16.35	18.61	14.81	14.44	9.82	10.28	11.28	11.14	11.22	10.09
(184)	14.21	13.49	15.61	15.53	12.25	14.06	13.94	5.98	5.94	8.35
(185)	19.04	23.26	12.07	12.37	10.83	10.69	9.38	8.83	9.54	5.07
(186)	20.67	21.18	18.32	18.22	20.58	17.54	18.73	13.86	10.72	2.09
(187)	24.68	22.81	25.09	31.58	38.33	31.82	42.27	20.75	11.08	0.01
(188)	21.91	20.86	23.53	29.14	36.68	31.02	41.04	22.51	12.78	0.21
(189)	29.30	34.49	33.34	34.47	36.52	39.02	39.00	3.53	3.33	0.36
(190)	14.78	16.65	18.45	20.98	20.28	18.47	10.51	3.32	4.00	5.46
(191)	18.45	17.87	18.15	18.88	18.16	19.59	18.45	12.62	9.38	2.34

Appendix B (Continued)

Equation	Order 1	Order 2	Order 3	Order 4	Order 5	Order 6	Order 7	Order 8	Order 9	Order 10
(192)	22.43	23.21	17.68	19.18	18.13	18.16	17.73	14.73	12.92	17.15
(193)	23.93	23.24	19.67	15.91	19.01	18.99	16.84	17.04	8.43	3.53
(194)	24.57	32.11	33.78	27.82	16.92	15.72	14.65	14.79	20.60	24.90
(195)	23.56	32.05	33.70	23.58	14.18	13.34	12.53	12.60	18.00	22.52
(196)	26.33	24.86	28.20	32.46	33.71	31.87	30.30	39.71	32.40	20.76
(197)	23.87	22.72	22.28	19.77	14.07	14.33	13.90	9.98	6.64	5.25
(198)	24.52	25.68	23.70	19.19	22.18	25.44	26.27	23.71	24.34	10.31
(199)	25.26	19.68	19.47	16.13	16.13	15.13	19.34	19.73	16.17	15.96
(200)	33.80	44.08	52.47	43.93	19.73	24.98	27.06	17.14	4.70	0.33
(201)	30.94	41.20	49.87	41.55	21.64	28.22	30.20	18.35	5.00	0.25
(202)	27.84	29.97	30.96	25.51	25.36	25.97	35.18	31.13	18.62	1.66
(203)	24.82	27.23	26.68	28.12	29.90	32.51	19.37	12.76	9.46	7.92
(204)	25.24	21.48	22.91	22.03	22.90	19.33	22.22	18.96	11.38	7.60
(205)	28.72	26.04	34.34	35.05	37.09	38.76	39.99	45.86	42.80	25.32
(206)	23.94	22.50	31.24	31.79	35.08	36.77	38.44	44.32	42.00	25.14
(207)	25.74	19.07	16.96	17.10	14.03	20.46	12.22	18.06	9.99	7.44
(208)	18.19	17.08	16.90	14.44	13.98	10.22	8.30	5.17	5.06	3.95
(209)	21.62	23.28	23.38	28.32	28.96	38.03	41.23	42.15	19.37	18.68
(210)	20.90	23.32	23.04	29.61	29.94	36.54	42.16	43.02	16.90	14.59
(211)	31.28	31.85	33.49	39.13	36.74	43.95	43.67	45.97	37.70	12.52
(212)	21.17	26.59	29.54	34.41	38.04	33.48	36.63	19.65	17.98	17.86
(213)	20.45	26.81	26.52	34.49	37.92	33.77	36.92	19.15	14.46	14.74
(214)	33.17	33.42	29.91	23.79	27.00	28.32	23.95	35.90	37.10	43.50
(215)	6.71	2.83	2.77	1.54	1.61	1.73	1.92	2.44	0.74	0.28
(216)	24.17	18.97	25.61	24.58	28.01	27.69	8.66	3.98	4.84	0.11
(217)	23.08	20.77	24.06	23.38	20.34	23.86	20.64	12.74	5.37	$6.82 \mathrm{E}-05$

References

[1] S. Mindess, F. Young, D. Darwin, Concrete, N.P.H., Upper Saddle River, 2003.
[2] G.E. Troxell, H.E. Davis, Composition and Properties of Concrete, McGraw-Hill, New York, 1968.
[3] J.C. Maso, Influence of the Interfacial Transition Zone on Composite Mechanical Properties. Interfacial Transition Zone in Concrete: State of the Art Report, E \& FN Spon, London, 1996, pp. 103-116.
[4] P.K. Mehta, J.M. Monteiro, Concrete: Structure, Properties, and Materials, N.J.P.H., Englewood Cliffs, 1993.
[5] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, Cambridge University Press, New York, 1994.
[6] B.P. Lathi, Modern Digital and Analog Communication Systems, Oxford University Press, NewYork, 1998.
[7] K.N. Le, K.P. Dabke, G.K. Egan, Hyperbolic wavelet power spectra of non-stationary signals, Opt. Eng. 42 (10) (2003) $3017-3037$.
[8] W.Y.V. Tam, K.N. Le, The six-sigma principle and prevention-appraisal-failure modeling for quality improvement in construction. Build. Environ., in press.
[9] B.P.V. Milligen, C. Hidalgo, E. Sanchez, Nonlinear phenomena and intermittency in plasma and turbulence, Phys. Rev. Lett. 74 (3) (1995) $395-398$.
[10] A.M. Neville, in: H. Burnt Mill (Ed.), Properties of Concrete, Longman, Essex, New York, 1995.
[11] BS, 882, Specification for aggregates from natural sources for concrete British Standards Institution London, United Kingdom, 1992.
[12] BS 812: Part 2, Methods for determination of density, British Standards Institution London, United Kingdom, 1995.
[13] P.C. Hewlett, Lea's Chemistry of Cement and Concrete, Arnold, London, 1998.
[14] Oklahoma State University, Recycled Aggregate: http://osu.okstate.edu/.
[15] BS 812: Part 105.1, Flakiness index, British Standards Institution, London, United Kingdom, 1989.
[16] BS 812: Part 105.2, Elongation index of coarase aggregate, British Standards Institution, London, United Kingdom, 1989.
[17] BS 812: Part 111, Methods for determination of ten per cent fines value (TFV), British Standards Institution, London, United Kingdom, 1990.
[18] BS 812: Part 112, Methods for determination of aggregate impact value (AIV), British Standards Institution, London, United Kingdom, 1990.
[19] K.S. Crentsil, T. Brown, Guide for specification of recycled concrete aggregate (RCA) for concrete production: final report. http://www.ecorecycle.vic.gov.au/asset/1/upload/Guide_for_Specification_of_Recycled_Concrete_Aggregates_(RCA).pdf.
[20] D.S. Dabby, Musical variations from a chaotic mapping, Chaos 6 (2) (1996) 95-107.
[21] H. Franco, Wavelet analysis of a nonlinear oscillator transient during synchronization, Int. J. Bifurcat. Chaos 6 (12B) (1996) 2557-2570.
[22] B.A. Jubran, M.N. Hamdan, N.H. Shabaneh, Wavelet and chaos analysis of flow induced vibration of a single cylinder in cross-flow, Int. J. Eng. Sci. 36 (7/8) (1998) 843-864.
[23] B.A. Jubran, M.N. Hamdan, N.H. Shabanneh, Wavelet and chaos analysis of irregularities of vortex shedding, Mech. Res. Commun. 25 (5) (1998) 583-591.
[24] W.J. Staszewski, K. Worden, Wavelet analysis of time-series: coherent structues, chaos and noise, Int. J. Bifurcat. Chaos 9 (3) (1999) 455-471.
[25] BS 812: Part 109, Method for determination of moisture content, British Standards Institution, London, United Kingdom, 1990.
[26] BS 812: Part 117, Methods for determination of water-soluble chloride salts, British Standards Institution, London, United Kingdom, 1988.

[^0]: * Corresponding author. Tel.: +61 75552 9278; fax: +61 755528065.

 E-mail address: v.tam@ griffith.edu.au (V.W.Y. Tam).
 ${ }^{1}$ These authors contributed equally.

[^1]: ${ }^{\text {a }}$ The saturated time is obtained when the mass becomes steady.

